Kidney concentrating capacity in children with autosomal recessive polycystic kidney disease is linked to glomerular filtration and hypertension
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36538056
PubMed Central
PMC10234879
DOI
10.1007/s00467-022-05834-5
PII: 10.1007/s00467-022-05834-5
Knihovny.cz E-resources
- Keywords
- Glomerular filtration rate, Hypertension, Kidney length, Pediatric population,
- MeSH
- Renal Insufficiency, Chronic * complications MeSH
- Deamino Arginine Vasopressin MeSH
- Child MeSH
- Glomerular Filtration Rate MeSH
- Hypertension * MeSH
- Kidney MeSH
- Humans MeSH
- Polycystic Kidney, Autosomal Dominant * MeSH
- Polycystic Kidney, Autosomal Recessive * complications MeSH
- Retrospective Studies MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Deamino Arginine Vasopressin MeSH
BACKGROUND: Impaired kidney concentration capacity is present in half of the patients with autosomal dominant polycystic kidney disease (ADPKD). The kidney concentrating capacity was further impaired within the animal model of autosomal recessive polycystic kidney disease (ARPKD). To date, only one small study has investigated it in children having ARPKD. Therefore, we aimed to study the kidney concentrating ability in a larger cohort of children with ARPKD. METHODS: Eighteen children (median age 8.5 years, range 1.3-16.8) were retrospectively investigated. A standardized kidney concentrating capacity test was performed after the application of a nasal drop of desmopressin (urine osmolality > 900 mOsmol/kg). The glomerular filtration rate was estimated using the Schwartz formula (eGFR) and blood pressure (BP) was measured as office BP. RESULTS: Kidney concentrating capacity was decreased (urine osmolality < 900 mOsmol/kg) in 100% of children with ARPKD. The median urine osmolality after desmopressin application was 389 (range 235-601) mOsmol/kg. Sixteen patients (89%) were defined as hypertensive based on their actual BP level or their use of antihypertensive drugs. The maximum amounts of urinary concentration correlated significantly with eGFR (r = 0.72, p < 0.0001) and hypertensive scores (r = 0.50, p < 0.05), but not with kidney size. Twelve patients (67%) were defined as having CKD stages 2-4. The median concentrating capacity was significantly lower in children within this group, when compared to children with CKD stage 1 possessing a normal eGFR (544 mOsmol/kg, range 413-600 mOsmol/kg vs. 327 mOsmol/kg, range 235-417 mOsmol/l, p < 0.001). CONCLUSIONS: Impaired kidney concentrating capacity is present in most children with ARPKD and is associated with decreased eGFR and hypertension. A higher resolution version of the Graphical abstract is available as Supplementary information.
Department of Pediatrics 2nd Medical Faculty Charles University Prague Czech Republic
Department of Pediatrics University Hospital Ostrava Ostrava Czech Republic
See more in PubMed
Gimpel C, Liebau MC, Schaefer F. Systematic review on outcomes used in clinical research on autosomal recessive polycystic kidney disease-are patient-centered outcomes our blind spot? Pediatr Nephrol. 2020;36:3841–3851. doi: 10.1007/s00467-021-05192-8. PubMed DOI PMC
Guay-Woodford LM, Bissler JJ, Braun MC, Bockenhauer D, Cadnapaphornchai MA, Dell KM, Kerecuk L, Liebau MC, Alonso-Peclet MH, Shneider B, Emre S, Heller T, Kamath BM, Murray KF, Moise K, Eichenwald EE, Evans J, Keller RL, Wilkins-Haug L, Bergmann C, Gunay-Aygun M, Hooper SR, Hardy KK, Hartung EA, Streisand R, Perrone R, Moxey-Mims M. Consensus expert recommendations for the diagnosis and management of autosomal recessive polycystic kidney disease: report of an international conference. J Pediatr. 2014;165:611–617. doi: 10.1016/j.jpeds.2014.06.015. PubMed DOI PMC
Wilson PD. Polycystic kidney disease. N Engl J Med. 2004;350:151–164. doi: 10.1056/NEJMra022161. PubMed DOI
Fonck C, Chauveau D, Gagnadoux MF, Pirson Y, Grünfeld JP. Autosomal recessive polycystic kidney disease in adulthood. Nephrol Dial Transplant. 2001;16:1648–1652. doi: 10.1093/ndt/16.8.1648. PubMed DOI
Kääriäinen H, Koskimies O, Norio R. Dominant and recessive polycystic kidney disease in children: evaluation of clinical features and laboratory data. Pediatr Nephrol. 1988;2:296–302. doi: 10.1007/BF00858681. PubMed DOI
Seeman T, Dusek J, Vondrák K, Bláhová K, Simková E, Kreisinger J, Dvorák P, Kyncl M, Hríbal Z, Janda J. Renal concentrating capacity is linked to blood pressure in children with autosomal dominant polycystic kidney disease. Physiol Res. 2004;53:629–634. PubMed
Gabow PA, Kaehny WD, Johnson AM, Duley IT, Manco-Johnson M, Lezotte DC, Schrier RW. The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney Int. 1989;35:675–680. doi: 10.1038/ki.1989.38. PubMed DOI
Zittema D, Casteleijn NF, Bakker SJ, Boesten LS, Duit AA, Franssen CF, Gaillard CA, Gansevoort RT. Urine concentrating capacity, vasopressin and copeptin in ADPKD and IgA nephropathy patients with renal impairment. PLoS ONE. 2017;12:e0169263. doi: 10.1371/journal.pone.0169263. PubMed DOI PMC
Anand SK, Chan JC, Liebermann E. Polycystic disease and hepatic fibrosis in children: renal function studies. Am J Dis Child. 1975;129:810–813. doi: 10.1001/archpedi.1975.02120440036008. PubMed DOI
Nauta J, Goedbloed MA, Herck HV, Hesselink DA, Visser P, Willemsen R, Dokkum RPEV, Wright CJ, Guay-Woodford LM. New rat model that phenotypically resembles autosomal recessive polycystic kidney disease. J Am Soc Nephrol. 2000;11:2272–2284. doi: 10.1681/ASN.V11122272. PubMed DOI
Seeman T, Blažík R, Fencl F, Bláhová K, Obeidová L, Štekrová J, Weigel F, John-Kroegel U. Ambulatory blood pressure and hypertension control in children with autosomal recessive polycystic kidney disease: clinical experience from two central European tertiary centres. J Hypertens. 2022;40:425–431. PubMed
Janda J, Bláhová K, Marek V, Eliášek J. Renal concentrating ability test in health children and adolescents. Kinderärztl Prax. 1988;56:133–137. PubMed
Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration to estimate glomerular filtration rate in infancy, childhood and adolescence. Pediatr Clin North Am. 1987;34:571–590. doi: 10.1016/S0031-3955(16)36251-4. PubMed DOI
Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–637. doi: 10.1681/ASN.2008030287. PubMed DOI PMC
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.
Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, Invitti C, Litwin M, Mancia G, Pall D, Rascher W, Redon J, Schaefer F, Seeman T, Sinha M, Stabouli S, Webb NJ, Wühl E, Zanchetti A. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34:1887–1920. doi: 10.1097/HJH.0000000000001039. PubMed DOI
Guidi E, Bianchi G, Rivolta E, Ponticelli C, Quarto di Palo F, Minetti L, Polli E. Hypertension in man with a kidney transplant: role of familial versus other factors. Nephron. 1985;41:14–21. doi: 10.1159/000183539. PubMed DOI
Rosenbaum DM, Korngold E, Teele RL. Sonographic assessment of renal length in normal children. Am J Roentgenol. 1984;142:467–469. doi: 10.2214/ajr.142.3.467. PubMed DOI
Kaplan BS, Fay J, Shah V, Dillon MJ, Barratt TM. Autosomal recessive polycystic kidney disease. Pediatr Nephrol. 1989;3:43–49. doi: 10.1007/BF00859625. PubMed DOI
Marild S, Rembratt A, Jodal U, Norgaard JP. Renal concentrating capacity test using desmopressin at bedtime. Pediatr Nephrol. 2001;16:439–442. doi: 10.1007/s004670100578. PubMed DOI
Grantham JJ. Bully renal cysts knock down urine-concentrating capacity in the early round. Clin J Am Soc Nephrol. 2012;7:875–877. doi: 10.2215/CJN.03720412. PubMed DOI
Heikkilä J, Jahnukainen T, Holmberg C, Taskinen S. Association of renal glomerular and tubular function with renal outcome in patients with posterior urethral valves. Urology. 2021;153:285–290. doi: 10.1016/j.urology.2020.11.045. PubMed DOI
Dinneen MD, Duffy PG, Barratt TM, Ransley PG. Persistent polyuria after posterior urethral valves. Br J Urol. 1995;75:236–240. doi: 10.1111/j.1464-410X.1995.tb07318.x. PubMed DOI
García-Nieto V, García-Rodríguez VE, Luis-Yanes MI, Monge M, Arango-Sancho P, Garin EH. Eur J Pediatr. 2019;178:525–531. doi: 10.1007/s00431-019-03324-9. PubMed DOI
García-Nieto V, González-Cerrato S, Luis-Yanes MI, Monge-Zamorano M, Reyes-Millán B. Decreased concentrating capacity in children with febrile urinary tract infection and normal 99mTc-dimercaptosuccinic acid scan: does medullonephritis exist? World J Pediatr. 2014;10:133–137. doi: 10.1007/s12519-014-0482-0. PubMed DOI
Kikuchi M, Sato M, Chiba A, Chiba Y, Nagao K, Suzuki T, Fujigaki Y, Hoshino H. Studies on the site of renal tubular defect in Bartter’s syndrome. Acta Paediatr Jpn. 1997;39:358–361. doi: 10.1111/j.1442-200X.1997.tb03753.x. PubMed DOI
Janda J, Rambousek V, Kolský A, Stejskal J, Klimesová D, Feber J. Acute interstitial nephritis with uveitis in children and adolescents. Cesk Pediatr. 1990;45:7–11. PubMed
Rossi R, Helmchen U, Schellong G. Tubular function and histological findings in ifosfamide-induced renal Fanconi syndrome–a report of two cases. Eur J Pediatr. 1992;151:384–387. doi: 10.1007/BF02113264. PubMed DOI
de Jong M, Monnens L. Haemolytic-uraemic syndrome: a 10-year follow-up study of 73 patients. Nephrol Dial Transplant. 1988;3:379–382. doi: 10.1093/oxfordjournals.ndt.a091684. PubMed DOI
Gabow PA, Chapman AB, Johnson AM, Tangel DJ, Duley IT, Kaehny WD. Renal structure and hypertension in autosomal dominant polycystic kidney disease. Kidney Int. 1990;38:1177–1180. doi: 10.1038/ki.1990.330. PubMed DOI
Seeman T, Dusek J, Vondrichová H, Kyncl M, John U, Misselwitz J, Janda J. Ambulatory blood pressure correlates with renal volume and number of renal cysts in children with autosomal dominant polycystic kidney disease. Blood Press Monit. 2003;8:107–110. doi: 10.1097/00126097-200306000-00003. PubMed DOI
Gunay-Aygun M, Avner ED, Bacallao RL, Choyke PL, Flynn JT, Germino GG, Guay-Woodford L, Harris P, Heller T, Ingelfinger J, Kaskel F, Kleta R, LaRusso NF, Mohan P, Pazour GJ, Shneider BL, Torres VE, Wilson P, Zak C, Zhou J, Gahl WA. Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis: summary statement of a first National Institutes of Health/Office of Rare Diseases conference. J Pediatr. 2006;149:159–164. doi: 10.1016/j.jpeds.2006.03.014. PubMed DOI PMC
Sudarikova AV, Vasileva VY, Sultanova RF, Ilatovskaya DV. Recent advances in understanding ion transport mechanisms in polycystic kidney disease. Clin Sci. 2021;135:2521–2540. doi: 10.1042/CS20210370. PubMed DOI PMC