Performance Level and Strike Type during Ground and Pound Determine Impact Characteristics and Net Force Variability
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UNCE/HUM/032
Charles University
Project "Application of Modern Technologies in Medicine and Industry" No. CZ.02.1.01/0.0/0.0/17_048/0007280
European Regional Development Fund
SGS-2019-001
University of West Bohemia
PubMed
36548502
PubMed Central
PMC9785771
DOI
10.3390/sports10120205
PII: sports10120205
Knihovny.cz E-zdroje
- Klíčová slova
- direct punch, elbow strike, mix martial art, palm strike, self-defence,
- Publikační typ
- časopisecké články MeSH
The evaluation of strike impact is important for optimal training, conditioning and tactical use. Therefore, the aim of this study was to evaluate ground and pound strikes, in terms of net force variability, across genders and performance levels. Eighty-one participants, professional men (n = 8, 37 ± 6 years, 195 ± 7 cm, 113 ± 27 kg), advanced men (n = 47, 26 ± 8 years, 180 ± 7 cm, 76 ± 11 kg), and advanced women (n = 26, 21 ± 1 years, 167 ± 6 cm, 61 ± 7 kg) performed three strikes from a kneeling position into a force plate on the ground. The elbow strike resulted in the highest impulse and the palm strike in the highest peak force for all three categories. These results support the recommendation that has previously been made to teach the palm strike to beginners and advanced tactical and combat athletes. The direct punch and elbow strike net force were characterized by a double peak curve, where the first peak variability explained 70.2-84% of the net force. The second peak was pronounced in professional men during elbow strikes, which explained 16% of net force variability. The strike type determines the impact net force and its characteristics, where palm strike is typical by highest peak impact tolerance and elbow strike by double force peak with high net force impulse.
Zobrazit více v PubMed
Hristovski R., Davids K., Araújo D., Button C. How boxers decide to punch a target: Emergent behaviour in nonlinear dynamical movement systems. J. Sport. Sci. Med. 2006;5:60. PubMed PMC
Vagner M., Cleather D., Kubovy P., Hojka V., Stastny P. Kinematic Determinants of Front Kick Dynamics Across Different Loading Conditions. Mil. Med. 2022;187:e147–e153. doi: 10.1093/milmed/usaa542. PubMed DOI
Vagner M., Thiel D., Jelen K., Tomsovsky L., Kubovy P., Tufano J.J. Wearing ballistic and weighted vests increases front kick forces. Arch. Budo. 2018;14:231–237.
Beránek V., Votápek P., Stastny P. Force and velocity of impact during upper limb strikes in combat sports: A systematic review and meta-analysis. Sports Biomech. 2020;2020:1778075. doi: 10.1080/14763141.2020.1778075. PubMed DOI
Beranek V., Stastny P., Novacek V., Votapek P., Formanek J. Upper Limb Strikes Reactive Forces in Mix Martial Art Athletes during Ground and Pound Tactics. Int. J. Environ. Res. Public Health. 2020;17:7782. doi: 10.3390/ijerph17217782. PubMed DOI PMC
Zayed M.A., Aly M.A.R. Relationship between biomechanical parameters of lower limb and velocity of arm strike during punch Gyaku Zuki performance in karate. IJSSA. 2018;8:62–70. doi: 10.21608/eijssa.2018.72892. DOI
Pędzich W., Mastalerz A., Urbanik C. The comparison of the dynamics of selected leg strokes in taekwondo WTF. Acta Bioeng. Biomech. 2006;8:83–90.
Bingul B., Bulgan C., Tore O., Aydin M., Bal E. The effects of impact forces and kinematics of two different stances at straight punch techniques in boxing. Arch. Budo Sci. Martial Arts Extrem. Sport. 2017;13:35–39.
Chaabène H., Franchini E., Miarka B., Selmi M.A., Mkaouer B., Chamari K. Time–motion analysis and physiological responses to karate official combat sessions: Is there a difference between winners and defeated karatekas? IJSPP. 2014;9:302–308. doi: 10.1123/ijspp.2012-0353. PubMed DOI
Bolander R.P., Neto O.P., Bir C.A. The effects of height and distance on the force production and acceleration in martial arts strikes. [(accessed on 1 January 2020)];J. Sports Sci. Med. 2009 8:47–52. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879635/ PubMed PMC
Neto O.P., Magini M., Saba M.M., Pacheco M.T.T. Comparison of force, power, and striking efficiency for a Kung Fu strike performed by novice and experienced practitioners: Preliminary analysis. Percept. Mot. Ski. 2008;106:188–196. doi: 10.2466/pms.106.1.188-196. PubMed DOI
Lenetsky S., Nates R.J., Brughelli M., Harris N.K. Is effective mass in combat sports punching above its weight? Hum. Mov. Sci. 2015;40:89–97. doi: 10.1016/j.humov.2014.11.016. PubMed DOI
De Souza V.A., Marques A.M. Relationship between age and expertise with the maximum impact force of a reverse punch by shotokan karate athletes. Arch. Budo. 2017;13:243–254.
Kimm D., Thiel D.V. Hand speed measurements in boxing. Procedia Eng. 2015;112:502–506. doi: 10.1016/j.proeng.2015.07.232. DOI
Wąsik J. Chosen aspects of physics in martial arts. Arch. Budo. 2009;5:11–14.
Pierce J.D., Reinbold K.A., Lyngard B.C., Goldman R.J., Pastore C.M. Direct measurement of punch force during six professional boxing matches. J. Quant. Anal. Sport. 2006;2:1004. doi: 10.2202/1559-0410.1004. DOI
Miarka B., Vecchio F.B.D., Camey S., Amtmann J.A. Comparisons: Technical-Tactical and Time-Motion Analysis of Mixed Martial Arts by Outcomes. J. Strength Cond. Res. 2016;30:7. doi: 10.1519/JSC.0000000000001287. PubMed DOI
Miarka B., Bello F.D., Brito C.J., Del Vecchio F.B., Amtmann J., Chamari K., Brito J.C. A 12-year cohort study of DOC-stoppage in professional mixed martial arts. IJSPP. 2019;14:606–611. doi: 10.1123/ijspp.2017-0131. PubMed DOI
Kirk C. Does anthropometry influence technical factors in competitive mixed martial arts? Hum. Mov. Sci. 2018;19:46–59. doi: 10.5114/hm.2018.74059. DOI
Zazryn T.R., McCrory P.R., Cameron P.A. Neurologic injuries in boxing and other combat sports. Phys. Med. Rehabil. Clin. 2009;20:227–239. doi: 10.1016/j.pmr.2008.10.004. PubMed DOI
Lenetsky S., Harris N., Brughelli M. Assessment and contributors of punching forces in combat sports athletes: Implications for strength and conditioning. Strength Cond. J. 2013;35:1–7. doi: 10.1519/SSC.0b013e31828b6c12. DOI
Fleisig G., Chu Y., Weber A., Andrews J. Variability in baseball pitching biomechanics among various levels of competition. Sport. Biomech. 2009;8:10–21. doi: 10.1080/14763140802629958. PubMed DOI
Schorer J., Baker J., Fath F., Jaitner T. Identification of interindividual and intraindividual movement patterns in handball players of varying expertise levels. J. Mot. Behav. 2007;39:409–421. doi: 10.3200/JMBR.39.5.409-422. PubMed DOI
Richter C., O’Connor N.E., Marshall B., Moran K. Comparison of discrete-point vs. Dimen-sionality-reduction techniques for describing performance-related aspects of maximal vertical jumping. J. Biomech. 2014;47:3012–3017. doi: 10.1016/j.jbiomech.2014.07.001. PubMed DOI
Stergiou N., Decker L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011;30:869–888. doi: 10.1016/j.humov.2011.06.002. PubMed DOI PMC
Cushion E.J., Warmenhoven J., North J., Cleather D.J. Task demand changes motor control strategies in vertical jumping. J. Mot. Behav. 2020;53:471–482. doi: 10.1080/00222895.2020.1797621. PubMed DOI
Cushion E.J., Warmenhoven J., North J., Cleather D.J. Principal component analysis reveals the proximal to distal pattern in vertical jumping is governed by two functional degrees of freedom. Front. Bioeng. Biotechnol. 2019;7:19. doi: 10.3389/fbioe.2019.00193. PubMed DOI PMC
Gianino C. Physics of Karate: Kinematics analysis of karate techniques by a digital movie camera. J. Phys. Educ. 2010;4:5.
Daniel T.M., Răzvan-Liviu P. Correlation between plantar pressure and striking speed in karate-do. Procedia Soc. Behav. Sci. 2014;117:357–360. doi: 10.1016/j.sbspro.2014.02.227. DOI
Rinaldi M., Nasr Y., Atef G., Bini F., Varrecchia T., Conte C., Chini G., Ranavolo A., Draicchio F., Pierelli F. Biomechanical characterization of the Junzuki karate punch: Indexes of performance. EJSS. 2018;18:796–805. doi: 10.1080/17461391.2018.1455899. PubMed DOI
Tong-Iam R., Rachanavy P., Lawsirirat C. Kinematic and kinetic analysis of throwing a straight punch: The role of trunk rotation in delivering a powerful straight punch. J. Phys. Educ. Sport. 2017;17:2538–2543.
Loturco I., Nakamura F.Y., Artioli G.G., Kobal R., Kitamura K., Abad C.C.C., Cruz I.F., Romano F., Pereira L.A., Franchini E. Strength and power qualities are highly associated with punching impact in elite amateur boxers. J. Strength Cond. Res. 2016;30:109–116. doi: 10.1519/JSC.0000000000001075. PubMed DOI
Atha J., Yeadon M., Sandover J., Parsons K. The damaging punch. Br. Med. J. 1985;291:1756–1757. doi: 10.1136/bmj.291.6511.1756. PubMed DOI PMC
Svoboda M., Soukup J., Jelen K., Kubový P. Measurement of force impact taekwondo athletes, assessing the possibility of injury of human head. Procedia Eng. 2016;136:211–215. doi: 10.1016/j.proeng.2016.01.199. DOI
Walilko T., Viano D.C., Bir C.A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sport. Med. 2005;39:710–719. doi: 10.1136/bjsm.2004.014126. PubMed DOI PMC
Menzel T., Potthast W. Validation of a Novel Boxing Monitoring System to Detect and Analyse the Centre of Pressure Movement on the Boxer’s Fist. Sensors. 2021;21:8394. doi: 10.3390/s21248394. PubMed DOI PMC
Beranek V., Stastny P., Turquier F., Novacek V., Votapek P. Analysis of the Contact Area forThree Types of Upper Limb Strikes. J. Funct. Morphol. 2022;7:50. doi: 10.3390/jfmk7020050. PubMed DOI PMC
Martinez A.A., Chakravarty A.B., Quenneville C.E. The effect of impact duration on the axial fracture tolerance of the isolated tibia during automotive and military impacts. Mech. Behav. Biomed. Mater. 2018;78:315–320. doi: 10.1016/j.jmbbm.2017.11.013. PubMed DOI
Adamec J., Hofer P., Pittner S., Monticelli F., Graw M., Schöpfer J. Biomechanical assessment of various punching techniques. Int. J. Legal Med. 2021;135:853–859. doi: 10.1007/s00414-020-02440-8. PubMed DOI PMC
Hausmanninger L., Komnik I., Potthast W. Hand as hammer: A comprehensive review of biomechanical studies related to occupational hand strikes. Hum. Factors Ergon. Manuf. 2019;29:361–371. doi: 10.1002/hfm.20793. DOI
Smith M.S., Dyson R.J., Hale T., Janaway L. Development of a boxing dynamometer and its punch force discrimination efficacy. J. Sport. Sci. 2000;18:445–450. doi: 10.1080/02640410050074377. PubMed DOI
Osman M., Pupic D., Baigent N. How many slaps is equivalent to one punch? New approaches to assessing the relative severity of violent acts. Psychol. Violence. 2017;7:69. doi: 10.1037/vio0000079. DOI
Ashker S.E. Technical and tactical aspects that differentiate winning and losing performances in boxing. J. Perform. Anal. Sport. 2011;11:356–364. doi: 10.1080/24748668.2011.11868555. DOI
Ouergui I., Hssin N., Franchini E., Gmada N., Bouhlel E. Technical and tactical analysis of high level kickboxing matches. Int. J. Perform. 2013;13:294–309. doi: 10.1080/24748668.2013.11868649. DOI
Lenetsky S., Brughelli M., Nates R.J., Cross M.R., Lormier A.V. Variability and reliability of punching impact kinetics in untrained participants and experienced boxers. J. Strength Cond. Res. 2018;32:1838–1842. doi: 10.1519/JSC.0000000000002352. PubMed DOI
Maldonado G., Bailly F., Souères P., Watier B. On the coordination of highly dynamic human movements: An extension of the Uncontrolled Manifold approach applied to precision jump in parkour. Sci. Rep. 2018;8:12219. doi: 10.1038/s41598-018-30681-6. PubMed DOI PMC
Wąsik J., Góra T. Impact of target selection on front kick kinematics in taekwondo–pilot study. Phys. Act. Rev. 2016;4:57–61. doi: 10.16926/par.2016.04.07. DOI