Genome-Wide Association Study for Body Conformation Traits and Fitness in Czech Holsteins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA19117
Ministry of Education Youth and Sports
MZE-RO0718
Ministry of Agriculture
NAZV QK1910320
Ministry of Agriculture
005/2022/Z
South Bohemia University project GAJU
PubMed
36552441
PubMed Central
PMC10375906
DOI
10.3390/ani12243522
PII: ani12243522
Knihovny.cz E-zdroje
- Klíčová slova
- GWAS, Holstein, SNP, body conformation, cattle, dairy capacity, feet and legs, wssGBLUP,
- Publikační typ
- časopisecké články MeSH
The aim of this study was a genome-wide association study (GWAS) on conformation traits using 25,486 genotyped Czech Holsteins, with 35,227 common SNPs for each genotype. Linear trait records were collected between 1995 and 2020. The Interbull information from Multiple Across Country Evaluation (MACE) was included for bulls that mostly had daughter records in a foreign country. When using the Bonferroni correction, the number of SNPs that were either significant or approached the significance threshold was low-dairy capacity composite on BTA4, feet and legs composite BTA21, total score BTA10, stature BTA24, body depth BTA6, angularity BTA20, fore udder attachment BTA10. Without the Bonferroni correction, the total number of significant or near of significance SNPs was 32. The SNPs were localized on BTA1,2,4,5,6,7,8,18,22,25,26,28 for dairy capacity composite, BTA15,21 for feet and legs composite, BTA10 for total score, BTA24 stature, BTA6,23 body depth, BTA20 angularity, BTA2 rump angle, BTA9,10 rear legs rear view, BTA2,19 rear legs side view, BTA10 fore udder attachment, BTA2 udder depth, BTA10 rear udder height, BTA12 central alignment, BTA24 rear teat placement, BTA8,29 rear udder width. The results provide biological information for the improvement of body conformation and fitness in the Holstein population.
Czech Moravian Breeders' Corporation Benešovská 123 252 09 Hradištko Czech Republic
Department of Animal and Dairy Science University of Georgia 425 River Road Athens GA 30602 USA
Institute of Animal Science Přátelství 815 104 00 Praha Czech Republic
Veterinary Research Institute Hudcova 296 621 00 Brno Czech Republic
Zobrazit více v PubMed
Womack J.E., Jang H.J., Lee M.O. Genomics of complex traits. Ann. N. Y. Acad. Sci. 2012;1271:33–36. doi: 10.1111/j.1749-6632.2012.06733.x. PubMed DOI PMC
Zhang H., Wang Z., Wang S., Li H. Progress of genome wide association study in domestic animals. J. Anim. Sci. Biotech. 2012;3:26. doi: 10.1186/2049-1891-3-26. PubMed DOI PMC
Meuwissen T.H., Hayes B.J., Goddard M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–1829. doi: 10.1093/genetics/157.4.1819. PubMed DOI PMC
Meuwissen T., Hayes B., Goddard M. Genomic selection: A paradigm shift in animal breeding. Anim. Front. 2016;6:6–14. doi: 10.2527/af.2016-0002. DOI
Ibanez-Escriche N., Simianer H. From the Editors: Animal breeding in the genomics era. Anim. Front. 2016;6:4–5. doi: 10.2527/af.2016-0001. DOI
Schaeffer L.R. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 2006;123:218–223. doi: 10.1111/j.1439-0388.2006.00595.x. PubMed DOI
Gutierrez-Reinoso M.A., Aponte P.M., Garcia-Herreros M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals. 2021;11:599. doi: 10.3390/ani11030599. PubMed DOI PMC
Ma L. Methods of genome-wide association studies and their applications in dairy cattle. J. Anim. Sci. 2020;98((Suppl. S4)):31. doi: 10.1093/jas/skaa278.055. DOI
Yudin N.S., Voevoda M.I. Molecular Genetic Markers of Economically Important Traits in Dairy Cattle. Russ. J. Genet. 2015;51:506–517. doi: 10.1134/S1022795415050087. PubMed DOI
Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity. 2018;120:125–137. doi: 10.1038/s41437-017-0024-3. PubMed DOI PMC
Yudin N.S., Yurchenko A.A., Larkin D.M. Signatures of selection and candidate genes for adaptation to extreme environmental factors in the genomes of Turano-Mongolian cattle breeds. Vavilov J. Genet. Breed. 2021;25:190–201. doi: 10.18699/VJ21.023. PubMed DOI PMC
Yudin N.S., Larkin D.M. Whole genome studies of origin, selection and adaptation of the Russian cattle breeds. Vavilov J. Genet. Breed. 2019;23:559–568. doi: 10.18699/VJ19.525. DOI
Moravčíková N., Kasarda R., Vostrý L., Krupová Z., Krupa E., Lehocká K., Olšanská B., Trakovická A., Nádaský R., Židek R., et al. Analysis of selection signatures in the beef cattle genome. Czech J. Anim. Sci. 2019;64:491–503. doi: 10.17221/226/2019-CJAS. DOI
Kasarda R., Moravčikova N., Olšanska B., Meszaros G., Vostry L., Vostra-Vydrova H., Lehocka K., Prišťak J., Candrak J. The evaluation of genomic diversity and selection signals in the autochthonous Slovak Spotted cattle. Czech J. Anim. Sci. 2021;66:251–261. doi: 10.17221/265/2020-CJAS. DOI
Bouwman A.C., Daetwyler H.D., Chamberlain A.J., Ponce C.H., Sargolzaei M., Schenkel F.S., Sahana G., Govignon-Gion A., Boitard S., Dolezal M., et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet. 2018;50:362–367. doi: 10.1038/s41588-018-0056-5. PubMed DOI
Igoshin A.V., Yudin N.S., Belonogova N.M., Larkin D.M. Genome-wide association study for body weight in cattle populations from Siberia. Anim. Genet. 2019;50:250–253. doi: 10.1111/age.12786. PubMed DOI
Kosinska-Selbi B., Suchocki T., Egger-Danner C., Schwarzenbacher H., Fraszczak M., Szyda J. Exploring the Potential Genetic Heterogeneity in the Incidence of Hoof Disorders in Austrian Fleckvieh and Braunvieh Cattle. Front. Genet. 2020;11:577116. doi: 10.3389/fgene.2020.577116. PubMed DOI PMC
Zhang X., Chu Q., Guo G., Dong G., Li X., Zhang Q., Zhang S., Zhang Z., Wang Y. Genome-wide association studies identified multiple genetic loci for body size at four growth stages in Chinese Holstein cattle. PLoS ONE. 2017;12:e0175971. doi: 10.1371/journal.pone.0175971. PubMed DOI PMC
Fang Z.-H., Pausch H. Multi-trait meta-analyses reveal 25 quantitative trait loci for economically important traits in Brown Swiss cattle. BMC Genom. 2019;20:695. doi: 10.1186/s12864-019-6066-6. PubMed DOI PMC
Gurrieri F., Everman D.B. Clinical, genetic, and molecular aspects of split-hand/foot malformation: An update. Am. J. Med. Genet. Part A. 2013;161:2860–2872. doi: 10.1002/ajmg.a.36239. PubMed DOI
Guo J., Jorjani H., Carlborg O. A genome-wide association study using international breeding-evaluation data identifies major loci affecting production traits and stature in the Brown Swiss cattle breed. BMC Genet. 2012;13:82. doi: 10.1186/1471-2156-13-82. PubMed DOI PMC
Zepeda-Batista J.L., Núñez-Domínguez R., Ramírez-Valverde R., Jahuey-Martínez F.J., Herrera-Ojeda J.B., Parra-Bracamonte G.M. Discovering of Genomic Variations Associated to Growth Traits by GWAS in Braunvieh Cattle. Genes. 2021;12:1666. doi: 10.3390/genes12111666. PubMed DOI PMC
An B., Xu L., Xia J., Wang X., Miao J., Chang T., Song M., Ni J., Xu L., Zhang L., et al. Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. BMC Genet. 2020;21:1–11. doi: 10.1186/s12863-020-0837-6. PubMed DOI PMC
Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Deniskova T.E., Abdelmanova A.S., Kharzinova V.R., Solkner J., Reyer H., Wimmers K., Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high density single nucleotide polymorphism analysis. PLoS ONE. 2020;15:e0242200. doi: 10.1371/journal.pone.0242200. PubMed DOI PMC
Zhong J.L., Xu J.W., Wang J., Wen Y.F., Niu H., Zheng L., He H., Peng K., He P., Shi S.-Y., et al. A novel SNP of PLAG1 gene and its association with growth traits in Chinese cattle. Gene. 2019;689:166–171. doi: 10.1016/j.gene.2018.12.018. PubMed DOI
Hou J., Qu K., Jia P., Hanif Q., Zhang J., Chen N., Dang R., Chen H., Huang B., Lei C. A SNP in PLAG1 is associated with body height trait in Chinese cattle. Anim. Genet. 2019;51:87–90. doi: 10.1111/age.12872. PubMed DOI
Lu X., Abdalla I.M., Nazar M., Fan Y., Zhang Z., Wu X., Xu T., Yang Z. Genome-Wide Association Study on Reproduction-Related Body-Shape Traits of Chinese Holstein Cows. Animals. 2021;11:1927. doi: 10.3390/ani11071927. PubMed DOI PMC
Wu X., Fang M., Liu L., Wang S., Liu J., Ding X., Zhang S., Zhang Q., Zhang Y., Qiao L., et al. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genom. 2013;14:897. doi: 10.1186/1471-2164-14-897. PubMed DOI PMC
Bolormaa S., Hayes B.J., van der Werf J.H.J., Pethick P., Goddard M.E., Daetwyler H.D. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genom. 2016;17:224. doi: 10.1186/s12864-016-2538-0. PubMed DOI PMC
Přibyl J., Bauer J., Pešek P., Přibylová J., Vostrý L., Zavadilová L. Domestic and Interbull information in the single step genomic evaluation of Holstein milk production. Czech J. Anim. Sci. 2014;59:409–415. doi: 10.17221/7652-CJAS. DOI
Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., Lee D.H. BLUPF90 and related programs. (BGF90) 2; Proceedings of the 7th World Congress on Genetics Applied to Livestock Production; Montpelier, France. 19–23 August 2002.
Němcová E., Štípková M., Zavadilová L. Genetic parameters for linear type traits in Czech Holstein cattle. Czech. J. Anim. Sci. 2011;56:157–162. doi: 10.17221/1435-CJAS. DOI
Zavadilová L., Přibyl J., Vostrý L., Bauer J. Single-step genomic evaluation for linear type traits of Holstein cows in Czech Republic. Anim. Sci. Pap. Rep. 2014;32:201–208.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Viena, Austria: 2022. [(accessed on 9 December 2022)]. Available online: www.R-project.org.
Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., Lawlor T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010;93:743–752. doi: 10.3168/jds.2009-2730. PubMed DOI
Lourenco D., Legarra A., Tsuruta S., Masuda Y., Aguilar I., Misztal I. Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90. Genes. 2020;11:790. doi: 10.3390/genes11070790. PubMed DOI PMC
Atashi H., Salavati M., De Koster J., Crowe M.A., Opsomer G., Hostens M., The GplusE Consortium A Genome-Wide Association Study for Calving Interval in Holstein Dairy Cows Using Weighted Single-Step Genomic BLUP Approach. Animals. 2020;10:500. doi: 10.3390/ani10030500. PubMed DOI PMC
VanRaden P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008;91:4414–4423. doi: 10.3168/jds.2007-0980. PubMed DOI
Cole J.B., VanRaden P.M., O’Connell J.R., Van Tassell C.P., Sonstegard T.S., Schnabel R.D., Taylor J.F., Wiggans G.R. Distribution and location of genetic effects for dairy traits. J. Dairy Sci. 2009;92:2931–2946. doi: 10.3168/jds.2008-1762. PubMed DOI
Fragomeni B.O., Lourenco D.A.L., Legarra A., VanRaden P.M., Misztal I. Alternative SNP weighting for single-step genomic best linear unbiased predictor evaluation of stature in US Holsteins in the presence of selected sequence variants. J. Dairy Sci. 2019;102:10012–10019. doi: 10.3168/jds.2019-16262. PubMed DOI
van den Berg S., Vandenplas J., van Eeuwijk F.A., Lopes M.S., Veerkamp R.F. Significance testing and genomic inflation factor using high-density genotypes or whole-genome sequence data. J. Anim. Breed. Genet. 2019;136:418–429. doi: 10.1111/jbg.12419. PubMed DOI PMC
Narum S.R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 2006;7:783–787. doi: 10.1007/s10592-005-9056-y. DOI
Yang Q., Cui J., Chazaro I., Cupples L.A., Demissie S. Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genet. 2005;6:S134. doi: 10.1186/1471-2156-6-S1-S134. PubMed DOI PMC
Aguilar I., Legarra A., Cardoso F., Masuda Y., Lourenco D., Misztal I. Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle. Genet. Sel. Evol. 2019;51:28. doi: 10.1186/s12711-019-0469-3. PubMed DOI PMC
Su G., Christensen O.F., Janss L., Lund M.S. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. J. Dairy Sci. 2014;97:6547–6559. doi: 10.3168/jds.2014-8210. PubMed DOI
Lourenco D.A.L., Fragomeni B.O., Bradford H.L., Menezes I.R., Ferraz J.B.S., Aguilar I., Tsuruta S., Misztal I. Implications of SNP weighting on single-step genomic predictions for different reference population sizes. J. Anim. Breed. Genet. 2017;134:463–471. doi: 10.1111/jbg.12288. PubMed DOI
Buaban S., Lengnudum K., Boonkum W., Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J. Dairy Sci. 2022;105:468–494. doi: 10.3168/jds.2020-19826. PubMed DOI
Sweett H., Fonseca P.A.S., Suárez-Vega A., Livernois A., Miglior F., Cánovas A. Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle. Sci. Rep. 2020;10:20102. doi: 10.1038/s41598-020-75758-3. PubMed DOI PMC
Baldwin-Brown J.G., Long A.D., Thornton K.R. The power to detect quantitative trait loci using resequenced, experimentally evolved populations of diploid, sexual organisms. Mol. Biol. Evol. 2014;31:1040–1055. doi: 10.1093/molbev/msu048. PubMed DOI PMC
Chen Z., Yao Y., Ma P., Wang Q., Pan Y. Haplotype-based genome-wide association study identifies loci and candidate genes for milk yield in Holsteins. PLoS ONE. 2018;13:e0192695. doi: 10.1371/journal.pone.0192695. PubMed DOI PMC
Oliveira H.R., Cant J.P., Brito L.F., Feitosa F.L.B., Chud T.C.S., Fonseca P.A.S., Jamrozik J., Silva F.F., Lourenco D.A.L., Schenkel F.S. Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle. J. Dairy Sci. 2019;102:8159–8174. doi: 10.3168/jds.2019-16451. PubMed DOI
Yue S.J., Zhao Y.Q., Gu X.R., Yin B., Jiang Y.L., Wang Z.H., Shi K.R. A genome-wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle. Anim. Genet. 2017;48:677–681. doi: 10.1111/age.12593. PubMed DOI
Cole J.B., Wiggans G.R., Ma L., Sonstegard T.S., Lawlor T.J., Jr., Crooker B.A., Van Tassell C.P., Yang J., Wang S., Matukumalli L.K., et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genom. 2011;12:408. doi: 10.1186/1471-2164-12-408. PubMed DOI PMC
Abdalla I.M., Lu X., Nazar M., Arbab A.A.I., Xu T., Yousif M.H., Mao Y., Yang Z. Genome-Wide Association Study Identifies Candidate Genes Associated with Feet and Leg Conformation Traits in Chinese Holstein Cattle. Animals. 2021;11:2259. doi: 10.3390/ani11082259. PubMed DOI PMC
Jardim J.G., Guldbrandtsen B., Lund M.S., Sahana G. Association analysis for udder index and milking speed with imputed whole-genome sequence variants in Nordic Holstein cattle. J. Dairy Sci. 2018;101:2199–2212. doi: 10.3168/jds.2017-12982. PubMed DOI
Wientjes Y.C.J., Bijma P., Calus M.P.L., Zwaan B.J., Vitezica Z.G., van den Heuvel J. The long-term effects of genomic selection: 1. Response to selection, additive genetic variance, and genetic architecture. Genet. Sel. Evol. 2022;54:19. doi: 10.1186/s12711-022-00709-7. PubMed DOI PMC
Hidalgo J., Tsuruta S., Lourenco D., Masuda Y., Huang Y., Gray K.A., Misztal I. Changes in genetic parameters for fitness and growth traits in pigs under genomic selection. J. Anim. Sci. 2020;98:skaa032. doi: 10.1093/jas/skaa032. PubMed DOI PMC
Hidalgo J., Lourenco D., Tsuruta S., Masuda Y., Breen V., Hawken R., Bermann M., Misztal I. Investigating the persistence of accuracy of genomic predictions over time in broilers. J. Anim. Sci. 2021;99:skab239. doi: 10.1093/jas/skab239. PubMed DOI PMC
Nazar M., Abdalla I.M., Chen Z., Ullah N., Liang Y., Chu S., Xu T., Mao Y., Yang Z., Lu X. Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle. Animals. 2022;12:2542. doi: 10.3390/ani12192542. PubMed DOI PMC
Weikard R., Demasius W., Kuehn C. Mining long noncoding RNA in livestock. Anim. Genet. 2016;48:3–18. doi: 10.1111/age.12493. PubMed DOI
Jevsinek Skok D., Godnic I., Zorc M., Horvat S., Dovc P., Kovac M., Kunej T. Genome-wide in silico screening for microRNA genetic variability in livestock species. Anim. Genet. 2013;44:669-667. doi: 10.1111/age.12072. PubMed DOI
Kyselova J., Tichý L., Jochová K. (2021): The role of molecular genetics in animal breeding: A minireview. Czech J. Anim. Sci. 2021;66:107–111. doi: 10.17221/251/2020-CJAS. DOI
Kosovsky G.Y., Glazko V.I., Glazko G.V., Zybaylov B.L., Glazko T.T. Leukocytosis and Expression of Bovine Leukemia Virus microRNAs in Cattle. Front. Vet. Sci. 2020;7:272. doi: 10.3389/fvets.2020.00272. PubMed DOI PMC