Breath Tests Used in the Context of Bariatric Surgery
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
36553178
PubMed Central
PMC9777764
DOI
10.3390/diagnostics12123170
PII: diagnostics12123170
Knihovny.cz E-resources
- Keywords
- bariatric surgery, breath tests, gases determined, obesity, organs, substances administered,
- Publication type
- Journal Article MeSH
- Review MeSH
This review article focuses on the use of breath tests in the field of bariatrics and obesitology. The first part of the review is an introduction to breath test problematics with a focus on their use in bariatrics. The second part provides a brief history of breath testing. Part three describes how breath tests are used for monitoring certain processes in various organs and various substances in exhaled air and how the results are analyzed and evaluated. The last part covers studies that described the use of breath tests for monitoring patients that underwent bariatric treatments. Although the number of relevant studies is small, this review could promote the future use of breath testing in the context of bariatric treatments.
See more in PubMed
Prokopcová I., Dujsíková H., Mišejková M., Prokešová J. Přínos dechových testů v gastroenterologii. Med. Praxi. 2008;5:308–309.
Kocna P. Dechové testy-moderní, neinvazivní diagnostika. Interní Med. 2006;8:336–341.
Hammer H.F., Fox M.R., Keller J., Salvatore S., Basilisco G., Hammer J., Lopetuso L., Benninga M., Borrelli O., Dumitrascu D., et al. European guideline on indications, performance, and clinical impact of hydrogen and methane breath tests in adult and pediatric patients: European Association for Gastroenterology, Endoscopy and Nutrition, European Society of Neurogastroenterology and Motility, and European Society for Paediatric Gastroenterology Hepatology and Nutrition consensus. United Eur. Gastroenterol. J. 2022;10:15–40. PubMed PMC
Kocna P. Funkční dechové testy–neinvazivní diagnostika v gastroenterologii. Klin. Biochem. Metab. 2021;29:124–131.
Campro Scientific GmbH. [(accessed on 13 December 2022)]. Available online: https://campro-webshop.eu/epages/8d71b479-42b8-40eb-bc7c-8545d1a52e04.sf/en_GB/?ObjectPath=/Shops/8d71b479-42b8-40eb-bc7c-8545d1a52e04/Categories/Documents/Breath_Test.
Berger D. A brief history of medical diagnosis and the birth of the clinical laboratory. Part 1—Ancient times through the 19th century. MLO Med. Lab. Obs. 1999;31:28–30. PubMed
Nielsen J.P. Trace constituents in breath as related to flatulence; Proceedings of the Fifth Annual Dry Bean Research Conference; Denver, CO, USA. 5–7 December 1961; p. 49.
Schwabe A.D., Cozzetto F.J., Bennett L.R., Mellinkoff S.M. Estimation of fat absorption by monitoring of expired radioactive carbon dioxide after feeding a radioactive fat. Gastroenterology. 1962;42:285–291. doi: 10.1016/S0016-5085(62)80027-4. PubMed DOI
Newman A. Breath-analysis tests in gastroenterology. Gut. 1974;15:308–323. doi: 10.1136/gut.15.4.308. PubMed DOI PMC
Lacroix M., Mosora F., Pontus M., Lefebvre P., Luyckz A., Lopez-Habib G. Glucose naturally labeled with carbon-13: Use for metabolic studies in man. Science. 1973;181:445–446. doi: 10.1126/science.181.4098.445. PubMed DOI
Graham D.Y., Klein P.D., Evans D.J., Jr., Evans D.G., Alpert L.C., Opekun A.R., Boutton T.W. Campylobacter pylori detected noninvasively by the 13C-urea breath test. Lancet. 1987;1:1174–1177. doi: 10.1016/S0140-6736(87)92145-3. PubMed DOI
Marshall B.J., Surveyor I. Carbon-14 urea breath test for the diagnosis of Campylobacter pylori associated gastritis. J. Nucl. Med. 1988;29:11–16. PubMed
Alving K., Weitzberg E., Lundberg J.M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993;6:1368–1370. doi: 10.1183/09031936.93.06091368. PubMed DOI
Ulrik C.S., Lange P., Hilberg O. Fractional exhaled nitric oxide as a determinant for the clinical course of asthma: A systematic review. Eur. Clin. Respir. J. 2021;8:1891725. doi: 10.1080/20018525.2021.1891725. PubMed DOI PMC
Som S., Dutta Banik G., Maity A., Chaudhuri S., Pradhan M. Exhaled nitric oxide as a potential marker for detecting non-ulcer dyspepsia and peptic ulcer disease. J. Breath Res. 2018;12:026005. doi: 10.1088/1752-7163/aa8efb. PubMed DOI
Christl S.U., Murgatroyd P.R., Gibson G.R., Cummings J.H. Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology. 1992;102:1269–1277. doi: 10.1016/0016-5085(92)90765-Q. PubMed DOI
Ghoshal U.C. How to interpret hydrogen breath tests. J. Neurogastroenterol. Motil. 2011;17:312–317. doi: 10.5056/jnm.2011.17.3.312. PubMed DOI PMC
Hammer K., Hasanagic H., Memaran N., Huber W.D., Hammer J. Relevance of Methane and Carbon Dioxide Evaluation in Breath Tests for Carbohydrate Malabsorption in a Paediatric Cohort. J. Pediatr. Gastroenterol. Nutr. 2021;72:e71–e77. doi: 10.1097/MPG.0000000000003004. PubMed DOI
Singer-Englar T., Rezaie A., Gupta K., Pichetshote N., Sedighi R., Lin E.A., Chua K., Pimentel M. Validation of a 4-Gas Device for Breath Testing in the Determination of Small Intestinal Bacterial Overgrowth. Gastroenterology. 2018;154:281. doi: 10.1016/S0016-5085(18)31300-3. DOI
Cao W., Duan Y. Current status of methods and techniques for breath analysis. Crit. Rev. Anal. Chem. 2007;37:3–13. doi: 10.1080/10408340600976499. PubMed DOI
Peron G., Dall’Acqua S., Sorrenti V., Carrara M., Fortinguerra S., Zorzi G., Buriani A. Retrospective analysis of a lactose breath test in a gastrointestinal symptomatic population of Northeast Italy: Use of (H2+2CH4) versus H2 threshold. Clin. Exp. Gastroenterol. 2018;11:243–248. doi: 10.2147/CEG.S163962. PubMed DOI PMC
Ghosh C., Maity A., Banik G.D., Som S., Chakraborty A., Selvan C., Ghosh S., Ghosh B., Chowdhury S., Pradhan M. Non-invasive 13C-glucose breath test using residual gas analyzer-mass spectrometry: A novel tool for screening individuals with pre-diabetes and type 2 diabetes. J. Breath Res. 2014;8:e036001. doi: 10.1088/1752-7155/8/3/036001. PubMed DOI
Peuhkuri K., Poussa T., Korpela R. Comparison of a portable breath hydrogen analyser (Micro H2) with a Quintron MicroLyzer in measuring lactose maldigestion, and the evaluation of a Micro H2 for diagnosing hypolactasia. Scand. J. Clin. Lab. Investig. 1998;58:217–224. doi: 10.1080/00365519850186607. PubMed DOI
Shrestha A., Prodhan U.K., Mitchell S.M., Sharma P., Barnett M.P.G., Milan A.M., Cameron-Smith D. Validity of a Portable Breath Analyser (AIRE) for the Assessment of Lactose Malabsorption. Nutrients. 2019;11:e1636. doi: 10.3390/nu11071636. PubMed DOI PMC
Lucero D.P. An analytical model of the pneumatic nondispersive infrared detector. J. Phys. E Sci. Instrum. 1973;6:281–286. doi: 10.1088/0022-3735/6/3/024. DOI
Chleboun J., Kocna P. Isotope Selective Nondispersive Infrared Spectrometry Can Compete with Isotope Ratio Mass Spectrometry in Cumulative 13CO2 Breath Tests: Assessment of Accuracy. Klin. Biochem. Metab. 2005;13:92–97.
Savarino V., Landi F., Dulbecco P., Ricci C., Tessieri L., Biagini R., Gatta L., Miglioli M., Celle G., Vaira D. Isotope ratio mass spectrometry (IRMS) versus laser-assisted ratio analyzer (LARA): A comparative study using two doses of. Dig. Dis. Sci. 2000;45:2168–2174. doi: 10.1023/A:1026605021484. PubMed DOI
Robinson I., Butcher H.L., Macleod N.A., Weidmann D. Hollow waveguide integrated laser spectrometer for 13CO2/12CO2 analysis. Opt. Express. 2019;27:35670–35688. doi: 10.1364/OE.27.035670. PubMed DOI
O‘Brien D.M., Niles K.R., Black J., Schoeller D.A. The Breath Carbon Isotope Ratio Reflects Short-term Added-Sugar Intake in a Dose-Response, Crossover Feeding Study of 12 Healthy Adults. J. Nutr. 2021;151:628–635. doi: 10.1093/jn/nxaa352. PubMed DOI PMC
Das S., Pal N. Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J. Electrochem. Soc. 2020;167:e037562. doi: 10.1149/1945-7111/ab67a6. DOI
Nakhleh M.K., Amal H., Jeries R., Broza Y.Y., Aboud M., Gharra A., Ivgi H., Khatib S., Badarneh S., Har-Shai L., et al. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano. 2017;11:112–125. doi: 10.1021/acsnano.6b04930. PubMed DOI PMC
Van Malderen K., De Winter B.Y., De Man J.G., De Schepper H.U., Lamote K. Volatomics in inflammatory bowel disease and irritable bowel syndrome. eBioMedicine. 2020;54:e102725. doi: 10.1016/j.ebiom.2020.102725. PubMed DOI PMC
Dryahina K., Smith D., Bortlík M., Machková N., Lukáš M., Španěl P. Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn‘s disease and ulcerative colitis. J. Breath Res. 2018;12:e016002. doi: 10.1088/1752-7163/aa8468. PubMed DOI
Coelho L.K., Carvalho N.S., Navarro-Rodriguez T., Marson F.A.L., Carvalho P.J.P.C. Lactulose Breath Testing Can Be a Positive Predictor Before Weight Gain in Participants with Obesity Submitted to Roux-en-Y Gastric Bypass. Obes. Surg. 2019;29:3457–3464. doi: 10.1007/s11695-019-04006-z. PubMed DOI
Ishida R.K., Faintuch J., Paula A.M., Risttori C.A., Silva S.N., Gomes E.S., Mattar R., Kuga R., Ribeiro A.S., Sakai P., et al. Microbial flora of the stomach after gastric bypass for morbid obesity. Obes. Surg. 2007;17:752–758. doi: 10.1007/s11695-007-9139-6. PubMed DOI
Lakhani S.V., Shah H.N., Alexander K., Finelli F.C., Kirkpatrick J.R., Koch T.R. Small intestinal bacterial overgrowth and thiamine deficiency after Roux-en-Y gastric bypass surgery in obese patients. Nutr. Res. 2008;28:293–298. doi: 10.1016/j.nutres.2008.03.002. PubMed DOI
Andalib I., Shah H., Bal B.S., Shope T.R., Finelli F.C., Koch T.R. Breath Hydrogen as a Biomarker for Glucose Malabsorption after Roux-en-Y Gastric Bypass Surgery. Dis. Markers. 2015;2015:102760. doi: 10.1155/2015/102760. PubMed DOI PMC
Sabaté J.M., Coupaye M., Ledoux S., Castel B., Msika S., Coffin B., Jouet P. Consequences of small intestinal bacterial overgrowth in obese patients before and after bariatric surgery. Obes. Surg. 2017;27:599–605. doi: 10.1007/s11695-016-2343-5. PubMed DOI
Mouillot T., Rhyman N., Gauthier C., Paris J., Lang A.-S., Lepers-Tassy S., Manfredi S., Lepage C., Leloup C., Jacquin-Piques A. Study of small intestinal bacterial overgrowth in a cohort of patients with abdominal symptoms who underwent bariatric surgery. Obes. Surg. 2020;30:2331–2337. doi: 10.1007/s11695-020-04477-5. PubMed DOI
Mathur R., Mundi M.S., Chua K.S., Lorentz P.A., Barlow G.M., Lin E., Burch M., Youdim A., Pimentel M. Intestinal methane production is associated with decreased weight loss following bariatric surgery. Obes. Res. Clin. Pract. 2016;10:728–733. doi: 10.1016/j.orcp.2016.06.006. PubMed DOI
Westerink F., Beijderwellen H., Huibregtse I., De Hoog M., De Brauw L., Brandjes D., Gerdes V.A. Lactose after Roux-en-Y gastric bypass for morbid obesity, is it a problem? Scand. J. Gastroenterol. 2020;55:1398–1404. PubMed
Uribarri-Gonzalez L., Nieto-Garcia L., Martis-Sueiro A., Dominguez-Munoz J.E. Exocrine pancreatic function and dynamic of digestion after restrictive and malabsorptive bariatric surgery: A prospective, cross-sectional, and comparative study. Surg. Obes. Relat. Dis. 2021;17:1766–1772. doi: 10.1016/j.soard.2021.06.019. PubMed DOI
Venturi M., Zuccato E., Restelli A., Mazzoleni L., Mussini E., Doldi S.B. Utility of Hydrogen and Methane Breath Tests in Combination with X-Ray Examination after a Barium Meal in the Diagnosis of Small Bowel Bacterial Overgrowth after Jejuno-Ileal Bypass for Morbid Obesity. Obes. Surg. 1994;4:144–148. doi: 10.1381/096089294765558719. PubMed DOI
Newberry C., Tierney A., Pickett-Blakely O. Lactulose Hydrogen Breath Test Result Is Associated with Age and Gender. Biomed. Res. Int. 2016;2016:1064029. doi: 10.1155/2016/1064029. PubMed DOI PMC
Mattsson J., Minaya M.T., Monegro M., Lebwohl B., Lewis S.K., Green P.H., Stenberg R. Outcome of breath tests in adult patients with suspected small intestinal bacterial overgrowth. Gastroenterol. Hepatol. Bed Bench. 2017;10:168–172. PubMed PMC
Sendino T., Sandúa A., Calleja S., González Á., Alegre E. Lactose tolerance test as an alternative to hydrogen breath test in the study of lactose malabsorption. Adv. Lab. Med. 2020;1:20200102. doi: 10.1515/almed-2020-0102. PubMed DOI PMC
Vantrappen G.R., Rutgeerts P.J., Ghoos Y.F., Hiele M.I. Mixed triglyceride breath test: A noninvasive test of pancreatic lipase activity in the duodenum. Gastroenterology. 1989;96:1126–1134. doi: 10.1016/0016-5085(89)91632-6. PubMed DOI
Löser C., Brauer C., Aygen S., Hennemann O., Fölsch U.R. Comparative clinical evaluation of the 13C-mixed triglyceride breath test as an indirect pancreatic function test. Scand. J. Gastroenterol. 1998;33:327–334. PubMed
Keller J., Bruckel S., Jahr C., Layer P. A modified 13C-mixed triglyceride breath test detects moderate pancreatic exocrine insufficiency. Pancreas. 2011;40:1201–1205. doi: 10.1097/MPA.0b013e318220ad98. PubMed DOI
Kocna P. Laboratorní diagnostika exokrinní funkce pankreatu. Klin. Biochem. Metab. 2020;28:150–160.
Keller J., Meier V., Wolfram K.U., Rosien U., Layer P. Sensitivity and specificity of an abbreviated (13)C-mixed triglyceride breath test for measurement of pancreatic exocrine function. United Eur. Gastroenterol. 2014;2:288–294. doi: 10.1177/2050640614542496. PubMed DOI PMC
Gottlieb K., Le C., Wacher V., Sliman J., Cruz C., Porter T., Carter S. Selection of a cut-off for high- and low-methane producers using a spot-methane breath test: Results from a large north American dataset of hydrogen, methane and carbon dioxide measurements in breath. Gastroenterol. Rep. 2017;5:193–199. doi: 10.1093/gastro/gow048. PubMed DOI PMC