Carbonaceous Materials Porosity Investigation in a Wet State by Low-Field NMR Relaxometry

. 2022 Dec 16 ; 15 (24) : . [epub] 20221216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36556827

Grantová podpora
SGS16/PřF/2022 University of Ostrava

The porosity of differently wetted carbonaceous material with disordered mesoporosity was investigated using low-field 1H NMR relaxometry. Spin−spin relaxation (relaxation time T2) was measured using the CPMG pulse sequence. We present a non-linear optimization method for the conversion of relaxation curves to the distribution of relaxation times by using non-specialized software. Our procedure consists of searching for the number of components, relaxation times, and their amplitudes, related to different types of hydrogen nuclei in the sample wetted with different amounts of water (different water-to-carbon ratio). We found that a maximum of five components with different relaxation times was sufficient to describe the observed relaxation. The individual components were attributed to a tightly bounded surface water layer (T2 up to 2 ms), water in small pores especially supermicropores (2 < T2 < 7 ms), mesopores (7 < T2 < 20 ms), water in large cavities between particles (20−1500 ms), and bulk water surrounding the materials (T2 > 1500 ms). To recalculate the distribution of relaxation times to the pore size distribution, we calculated the surface relaxivity based on the results provided by additional characterization techniques, such as thermoporometry (TPM) and N2/−196 °C physisorption.

Zobrazit více v PubMed

Stein A., Wang Z., Fierke M.A. Functionalization of Porous Carbon Materials with Designed Pore Architecture. Adv. Mater. 2009;21:265–293. doi: 10.1002/adma.200801492. DOI

Perrier L., Pijaudier-Cabot G., Grégoire D. Extended Poromechanics for Adsorption-Induced Swelling Prediction in Double Porosity Media: Modeling and Experimental Validation on Activated Carbon. Int. J. Solids Struct. 2018;146:192–202. doi: 10.1016/j.ijsolstr.2018.03.029. DOI

Bulavová P., Parmentier J., Slovák V. Facile Synthesis of Soft-Templated Carbon Monoliths with Hierarchical Porosity for Fast Adsorption from Liquid Media. Microporous Mesoporous Mater. 2018;272:155–165. doi: 10.1016/j.micromeso.2018.06.024. DOI

Lowell S., Shields J., Thomas M.A., Thommes M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer Science & Business Media; Dordrecht, The Netherlands: 2006. DOI

Balzer C., Braxmeier S., Neimark A.V., Reichenauer G. Deformation of Microporous Carbon during Adsorption of Nitrogen, Argon, Carbon Dioxide, and Water Studied by in Situ Dilatometry. Langmuir. 2015;31:12512–12519. doi: 10.1021/acs.langmuir.5b03184. PubMed DOI

Thommes M., Cychosz K.A. Physical Adsorption Characterization of Nanoporous Materials: Progress and Challenges. Adsorption. 2014;20:233–250. doi: 10.1007/s10450-014-9606-z. DOI

Veselá P., Riikonen J., Nissinen T., Lehto V.-P., Slovák V. Optimisation of Thermoporometry Measurements to Evaluate Mesoporous Organic and Carbon Xero-, Cryo- and Aerogels. Thermochim. Acta. 2015;621:81–89. doi: 10.1016/j.tca.2015.10.016. DOI

Landry M.R. Thermoporometry by Differential Scanning Calorimetry: Experimental Considerations and Applications. Thermochim. Acta. 2005;433:27–50. doi: 10.1016/j.tca.2005.02.015. DOI

Dessources A.H., Hartmann S., Baba M., Huesing N., Nedelec J.M. Multiscale Characterization of Hierarchically Organized Porous Hybrid Materials. J. Mater. Chem. 2012;22:2713–2720. doi: 10.1039/C1JM14905A. DOI

Cides da Silva L.C., Araújo G.L.B., Segismundo N.R., Moscardini E.F., Mercuri L.P., Cosentino I.C., Fantini M.C.A., Matos J.R. DSC Estimation of Structural and Textural Parameters of SBA-15 Silica Using Water Probe. J. Therm. Anal. Calorim. 2009;97:701–704. doi: 10.1007/s10973-009-0334-7. DOI

Kloetstra K.R., Zandbergen H.W., van Koten M.A., van Bekkum H. Thermoporometry as a New Tool in Analyzing Mesoporous MCM-41 Materials. Catal. Lett. 1995;33:145–156. doi: 10.1007/BF00817054. DOI

Ishikiriyama K., Todoki M., Motomura K. Pore Size Distribution (PSD) Measurements of Silica Gels by Means of Differential Scanning Calorimetry: I. Optimization for Determination of PSD. J. Colloid Interface Sci. 1995;171:92–102. doi: 10.1006/jcis.1995.1154. DOI

Takuji Y., Akira E., Takao O., Masaru N. Asian Pacific Confederation of Chemical Engineering Congress Program and Abstracts Asian Pacific Confederation of Chemical Engineers Congress Program and Abstracts. The Society of Chemical Engineers; Tsukuba, Japan: 2004. Characterization of Mesoporous Silicas with Uniform and Cylindrical Pores by Thermoporometry; p. 73.

Zelenková G., Zelenka T., Slovák V. Thermoporometry of Porous Carbon: The Effect of the Carbon Surface Chemistry on the Thickness of Non-Freezable Pore Water Layer (Delta Layer) Microporous Mesoporous Mater. 2021;326:111358. doi: 10.1016/j.micromeso.2021.111358. DOI

Krutyeva M., Grinberg F., Furtado F., Galvosas P., Kärger J., Silvestre-Albero A., Sepulveda-Escribano A., Silvestre-Albero J., Rodríguez-Reinoso F. Characterization of Carbon Materials with the Help of NMR Methods. Microporous Mesoporous Mater. 2009;120:91–97. doi: 10.1016/j.micromeso.2008.12.016. DOI

Aksnes D.W., Førland K., Kimtys L. Pore Size Distribution in Mesoporous Materials as Studied by 1H NMR. Phys. Chem. Chem. Phys. 2001;3:3203–3207. doi: 10.1039/b103228n. DOI

Camaiti M., Bortolotti V., Fantazzini P. Stone Porosity, Wettability Changes and Other Features Detected by MRI and NMR Relaxometry: A More than 15-Year Study: Magnetic Resonance for Fluids in Porous Media and Cultural Heritage. Magn. Reson. Chem. 2015;53:34–47. doi: 10.1002/mrc.4163. PubMed DOI

Schlienger S., Ducrot-Boisgontier C., Delmotte L., Guth J.-L., Parmentier J. History of the Micelles: A Key Parameter for the Formation Mechanism of Ordered Mesoporous Carbons via a Polymerized Mesophase. J. Phys. Chem. C. 2014;118:11919–11927. doi: 10.1021/jp301167h. DOI

Tananuwong K., Reid D. DSC and NMR Relaxation Studies of Starch? Water Interactions during Gelatinization. Carbohydr. Polym. 2004;58:345–358. doi: 10.1016/j.carbpol.2004.08.003. DOI

Meng X., Foston M., Leisen J., DeMartini J., Wyman C.E., Ragauskas A.J. Determination of Porosity of Lignocellulosic Biomass before and after Pretreatment by Using Simons’ Stain and NMR Techniques. Bioresour. Technol. 2013;144:467–476. doi: 10.1016/j.biortech.2013.06.091. PubMed DOI

Hansen E.W., Fonnum G., Weng E. Pore Morphology of Porous Polymer Particles Probed by NMR Relaxometry and NMR Cryoporometry. J. Phys. Chem. B. 2005;109:24295–24303. doi: 10.1021/jp055175f. PubMed DOI

Stingaciu L.R., Pohlmeier A., Blümler P., Weihermüller L., van Dusschoten D., Stapf S., Vereecken H. Characterization of Unsaturated Porous Media by High-Field and Low-Field NMR Relaxometry: Porous media investigation by NMR. Water Resour. Res. 2009;45:8412. doi: 10.1029/2008WR007459. DOI

Kleinberg R.L. Pore Size Distributions, Pore Coupling, and Transverse Relaxation Spectra of Porous Rocks. Magn. Reson. Imaging. 1994;12:271–274. doi: 10.1016/0730-725X(94)91534-2. PubMed DOI

Jaeger F., Bowe S., Van As H., Schaumann G.E. Evaluation of 1H NMR Relaxometry for the Assessment of Pore-Size Distribution in Soil Samples. Eur. J. Soil Sci. 2009;60:1052–1064. doi: 10.1111/j.1365-2389.2009.01192.x. DOI

Bayer J.V., Jaeger F., Schaumann G.E. Proton Nuclear Magnetic Resonance (NMR) Relaxometry in Soil Science Applications. Open Magn. Reson. J. 2010;3:15–26. doi: 10.2174/1874769801003010015. DOI

Hinedi Z.R., Kabala Z.J., Skaggs T.H., Borchardt D.B., Lee R.W.K., Chang A.C. Probing Soil and Aquifer Material Porosity with Nuclear Magnetic Resonance. Water Resour. Res. 1993;29:3861–3866. doi: 10.1029/93WR02302. DOI

Votrubová J., Šanda M., Císlerová M., Gao Amin M.H., Hall L.D. The Relationships between MR Parameters and the Content of Water in Packed Samples of Two Soils. Geoderma. 2000;95:267–282. doi: 10.1016/S0016-7061(99)00091-9. DOI

Bardenhagen I., Dreher W., Fenske D., Wittstock A., Bäumer M. Fluid Distribution and Pore Wettability of Monolithic Carbon Xerogels Measured by 1H NMR Relaxation. Carbon. 2014;68:542–552. doi: 10.1016/j.carbon.2013.11.033. DOI

Norinaga K., Hayashi J., Kudo N., Chiba T. Evaluation of Effect of Predrying on the Porous Structure of Water-Swollen Coal Based on the Freezing Property of Pore Condensed Water. Energy Fuels. 1999;13:1058–1066. doi: 10.1021/ef990024v. DOI

Fairhurst D., Cosgrove T., Prescott S.W. Relaxation NMR as a Tool to Study the Dispersion and Formulation Behavior of Nanostructured Carbon Materials: Relaxation NMR for Nanostructured Carbons. Magn. Reson. Chem. 2016;54:521–526. doi: 10.1002/mrc.4218. PubMed DOI

Krzyżak A.T., Habina I. Low Field 1H NMR Characterization of Mesoporous Silica MCM-41 and SBA-15 Filled with Different Amount of Water. Microporous Mesoporous Mater. 2016;231:230–239. doi: 10.1016/j.micromeso.2016.05.032. DOI

Krzyżak A.T., Mazur W., Matyszkiewicz J., Kochman A. Identification of Proton Populations in Cherts as Natural Analogues of Pure Silica Materials by Means of Low Field NMR. J. Phys. Chem. C. 2020;124:5225–5240. doi: 10.1021/acs.jpcc.9b11790. PubMed DOI PMC

Matei Ghimbeu C., Le Meins J.-M., Zlotea C., Vidal L., Schrodj G., Latroche M., Vix-Guterl C. Controlled Synthesis of NiCo Nanoalloys Embedded in Ordered Porous Carbon by a Novel Soft-Template Strategy. Carbon. 2014;67:260–272. doi: 10.1016/j.carbon.2013.09.089. DOI

Bakhmutov V.I. Practical NMR Relaxation for Chemists. Wiley; Chichester, UK: Hoboken, NJ, USA: 2004.

Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI

Fleury M., Kohler E., Norrant F., Gautier S., M’Hamdi J., Barré L. Characterization and Quantification of Water in Smectites with Low-Field NMR. J. Phys. Chem. C. 2013;117:4551–4560. doi: 10.1021/jp311006q. DOI

Belotti M., Martinelli A., Gianferri R., Brosio E. A Proton NMR Relaxation Study of Water Dynamics in Bovine Serum Albumin Nanoparticles. Phys Chem Chem Phys. 2010;12:516–522. doi: 10.1039/B911433E. PubMed DOI

Kleinberg R.L. Utility of NMR T2 Distributions, Connection with Capillary Pressure, Clay Effect, and Determination of the Surface Relaxivity Parameter Rho 2. Magn. Reson. Imaging. 1996;14:761–767. doi: 10.1016/S0730-725X(96)00161-0. PubMed DOI

Liaw H.-K., Kulkarni R., Chen S., Watson A.T. Characterization of Fluid Distributions in Porous Media by NMR Techniques. AIChE J. 1996;42:538–546. doi: 10.1002/aic.690420223. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...