Carbonaceous Materials Porosity Investigation in a Wet State by Low-Field NMR Relaxometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS16/PřF/2022
University of Ostrava
PubMed
36556827
PubMed Central
PMC9788483
DOI
10.3390/ma15249021
PII: ma15249021
Knihovny.cz E-zdroje
- Klíčová slova
- low-field NMR relaxometry, mesopores, porosity, relaxation time, relaxivity,
- Publikační typ
- časopisecké články MeSH
The porosity of differently wetted carbonaceous material with disordered mesoporosity was investigated using low-field 1H NMR relaxometry. Spin−spin relaxation (relaxation time T2) was measured using the CPMG pulse sequence. We present a non-linear optimization method for the conversion of relaxation curves to the distribution of relaxation times by using non-specialized software. Our procedure consists of searching for the number of components, relaxation times, and their amplitudes, related to different types of hydrogen nuclei in the sample wetted with different amounts of water (different water-to-carbon ratio). We found that a maximum of five components with different relaxation times was sufficient to describe the observed relaxation. The individual components were attributed to a tightly bounded surface water layer (T2 up to 2 ms), water in small pores especially supermicropores (2 < T2 < 7 ms), mesopores (7 < T2 < 20 ms), water in large cavities between particles (20−1500 ms), and bulk water surrounding the materials (T2 > 1500 ms). To recalculate the distribution of relaxation times to the pore size distribution, we calculated the surface relaxivity based on the results provided by additional characterization techniques, such as thermoporometry (TPM) and N2/−196 °C physisorption.
Zobrazit více v PubMed
Stein A., Wang Z., Fierke M.A. Functionalization of Porous Carbon Materials with Designed Pore Architecture. Adv. Mater. 2009;21:265–293. doi: 10.1002/adma.200801492. DOI
Perrier L., Pijaudier-Cabot G., Grégoire D. Extended Poromechanics for Adsorption-Induced Swelling Prediction in Double Porosity Media: Modeling and Experimental Validation on Activated Carbon. Int. J. Solids Struct. 2018;146:192–202. doi: 10.1016/j.ijsolstr.2018.03.029. DOI
Bulavová P., Parmentier J., Slovák V. Facile Synthesis of Soft-Templated Carbon Monoliths with Hierarchical Porosity for Fast Adsorption from Liquid Media. Microporous Mesoporous Mater. 2018;272:155–165. doi: 10.1016/j.micromeso.2018.06.024. DOI
Lowell S., Shields J., Thomas M.A., Thommes M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer Science & Business Media; Dordrecht, The Netherlands: 2006. DOI
Balzer C., Braxmeier S., Neimark A.V., Reichenauer G. Deformation of Microporous Carbon during Adsorption of Nitrogen, Argon, Carbon Dioxide, and Water Studied by in Situ Dilatometry. Langmuir. 2015;31:12512–12519. doi: 10.1021/acs.langmuir.5b03184. PubMed DOI
Thommes M., Cychosz K.A. Physical Adsorption Characterization of Nanoporous Materials: Progress and Challenges. Adsorption. 2014;20:233–250. doi: 10.1007/s10450-014-9606-z. DOI
Veselá P., Riikonen J., Nissinen T., Lehto V.-P., Slovák V. Optimisation of Thermoporometry Measurements to Evaluate Mesoporous Organic and Carbon Xero-, Cryo- and Aerogels. Thermochim. Acta. 2015;621:81–89. doi: 10.1016/j.tca.2015.10.016. DOI
Landry M.R. Thermoporometry by Differential Scanning Calorimetry: Experimental Considerations and Applications. Thermochim. Acta. 2005;433:27–50. doi: 10.1016/j.tca.2005.02.015. DOI
Dessources A.H., Hartmann S., Baba M., Huesing N., Nedelec J.M. Multiscale Characterization of Hierarchically Organized Porous Hybrid Materials. J. Mater. Chem. 2012;22:2713–2720. doi: 10.1039/C1JM14905A. DOI
Cides da Silva L.C., Araújo G.L.B., Segismundo N.R., Moscardini E.F., Mercuri L.P., Cosentino I.C., Fantini M.C.A., Matos J.R. DSC Estimation of Structural and Textural Parameters of SBA-15 Silica Using Water Probe. J. Therm. Anal. Calorim. 2009;97:701–704. doi: 10.1007/s10973-009-0334-7. DOI
Kloetstra K.R., Zandbergen H.W., van Koten M.A., van Bekkum H. Thermoporometry as a New Tool in Analyzing Mesoporous MCM-41 Materials. Catal. Lett. 1995;33:145–156. doi: 10.1007/BF00817054. DOI
Ishikiriyama K., Todoki M., Motomura K. Pore Size Distribution (PSD) Measurements of Silica Gels by Means of Differential Scanning Calorimetry: I. Optimization for Determination of PSD. J. Colloid Interface Sci. 1995;171:92–102. doi: 10.1006/jcis.1995.1154. DOI
Takuji Y., Akira E., Takao O., Masaru N. Asian Pacific Confederation of Chemical Engineering Congress Program and Abstracts Asian Pacific Confederation of Chemical Engineers Congress Program and Abstracts. The Society of Chemical Engineers; Tsukuba, Japan: 2004. Characterization of Mesoporous Silicas with Uniform and Cylindrical Pores by Thermoporometry; p. 73.
Zelenková G., Zelenka T., Slovák V. Thermoporometry of Porous Carbon: The Effect of the Carbon Surface Chemistry on the Thickness of Non-Freezable Pore Water Layer (Delta Layer) Microporous Mesoporous Mater. 2021;326:111358. doi: 10.1016/j.micromeso.2021.111358. DOI
Krutyeva M., Grinberg F., Furtado F., Galvosas P., Kärger J., Silvestre-Albero A., Sepulveda-Escribano A., Silvestre-Albero J., Rodríguez-Reinoso F. Characterization of Carbon Materials with the Help of NMR Methods. Microporous Mesoporous Mater. 2009;120:91–97. doi: 10.1016/j.micromeso.2008.12.016. DOI
Aksnes D.W., Førland K., Kimtys L. Pore Size Distribution in Mesoporous Materials as Studied by 1H NMR. Phys. Chem. Chem. Phys. 2001;3:3203–3207. doi: 10.1039/b103228n. DOI
Camaiti M., Bortolotti V., Fantazzini P. Stone Porosity, Wettability Changes and Other Features Detected by MRI and NMR Relaxometry: A More than 15-Year Study: Magnetic Resonance for Fluids in Porous Media and Cultural Heritage. Magn. Reson. Chem. 2015;53:34–47. doi: 10.1002/mrc.4163. PubMed DOI
Schlienger S., Ducrot-Boisgontier C., Delmotte L., Guth J.-L., Parmentier J. History of the Micelles: A Key Parameter for the Formation Mechanism of Ordered Mesoporous Carbons via a Polymerized Mesophase. J. Phys. Chem. C. 2014;118:11919–11927. doi: 10.1021/jp301167h. DOI
Tananuwong K., Reid D. DSC and NMR Relaxation Studies of Starch? Water Interactions during Gelatinization. Carbohydr. Polym. 2004;58:345–358. doi: 10.1016/j.carbpol.2004.08.003. DOI
Meng X., Foston M., Leisen J., DeMartini J., Wyman C.E., Ragauskas A.J. Determination of Porosity of Lignocellulosic Biomass before and after Pretreatment by Using Simons’ Stain and NMR Techniques. Bioresour. Technol. 2013;144:467–476. doi: 10.1016/j.biortech.2013.06.091. PubMed DOI
Hansen E.W., Fonnum G., Weng E. Pore Morphology of Porous Polymer Particles Probed by NMR Relaxometry and NMR Cryoporometry. J. Phys. Chem. B. 2005;109:24295–24303. doi: 10.1021/jp055175f. PubMed DOI
Stingaciu L.R., Pohlmeier A., Blümler P., Weihermüller L., van Dusschoten D., Stapf S., Vereecken H. Characterization of Unsaturated Porous Media by High-Field and Low-Field NMR Relaxometry: Porous media investigation by NMR. Water Resour. Res. 2009;45:8412. doi: 10.1029/2008WR007459. DOI
Kleinberg R.L. Pore Size Distributions, Pore Coupling, and Transverse Relaxation Spectra of Porous Rocks. Magn. Reson. Imaging. 1994;12:271–274. doi: 10.1016/0730-725X(94)91534-2. PubMed DOI
Jaeger F., Bowe S., Van As H., Schaumann G.E. Evaluation of 1H NMR Relaxometry for the Assessment of Pore-Size Distribution in Soil Samples. Eur. J. Soil Sci. 2009;60:1052–1064. doi: 10.1111/j.1365-2389.2009.01192.x. DOI
Bayer J.V., Jaeger F., Schaumann G.E. Proton Nuclear Magnetic Resonance (NMR) Relaxometry in Soil Science Applications. Open Magn. Reson. J. 2010;3:15–26. doi: 10.2174/1874769801003010015. DOI
Hinedi Z.R., Kabala Z.J., Skaggs T.H., Borchardt D.B., Lee R.W.K., Chang A.C. Probing Soil and Aquifer Material Porosity with Nuclear Magnetic Resonance. Water Resour. Res. 1993;29:3861–3866. doi: 10.1029/93WR02302. DOI
Votrubová J., Šanda M., Císlerová M., Gao Amin M.H., Hall L.D. The Relationships between MR Parameters and the Content of Water in Packed Samples of Two Soils. Geoderma. 2000;95:267–282. doi: 10.1016/S0016-7061(99)00091-9. DOI
Bardenhagen I., Dreher W., Fenske D., Wittstock A., Bäumer M. Fluid Distribution and Pore Wettability of Monolithic Carbon Xerogels Measured by 1H NMR Relaxation. Carbon. 2014;68:542–552. doi: 10.1016/j.carbon.2013.11.033. DOI
Norinaga K., Hayashi J., Kudo N., Chiba T. Evaluation of Effect of Predrying on the Porous Structure of Water-Swollen Coal Based on the Freezing Property of Pore Condensed Water. Energy Fuels. 1999;13:1058–1066. doi: 10.1021/ef990024v. DOI
Fairhurst D., Cosgrove T., Prescott S.W. Relaxation NMR as a Tool to Study the Dispersion and Formulation Behavior of Nanostructured Carbon Materials: Relaxation NMR for Nanostructured Carbons. Magn. Reson. Chem. 2016;54:521–526. doi: 10.1002/mrc.4218. PubMed DOI
Krzyżak A.T., Habina I. Low Field 1H NMR Characterization of Mesoporous Silica MCM-41 and SBA-15 Filled with Different Amount of Water. Microporous Mesoporous Mater. 2016;231:230–239. doi: 10.1016/j.micromeso.2016.05.032. DOI
Krzyżak A.T., Mazur W., Matyszkiewicz J., Kochman A. Identification of Proton Populations in Cherts as Natural Analogues of Pure Silica Materials by Means of Low Field NMR. J. Phys. Chem. C. 2020;124:5225–5240. doi: 10.1021/acs.jpcc.9b11790. PubMed DOI PMC
Matei Ghimbeu C., Le Meins J.-M., Zlotea C., Vidal L., Schrodj G., Latroche M., Vix-Guterl C. Controlled Synthesis of NiCo Nanoalloys Embedded in Ordered Porous Carbon by a Novel Soft-Template Strategy. Carbon. 2014;67:260–272. doi: 10.1016/j.carbon.2013.09.089. DOI
Bakhmutov V.I. Practical NMR Relaxation for Chemists. Wiley; Chichester, UK: Hoboken, NJ, USA: 2004.
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Fleury M., Kohler E., Norrant F., Gautier S., M’Hamdi J., Barré L. Characterization and Quantification of Water in Smectites with Low-Field NMR. J. Phys. Chem. C. 2013;117:4551–4560. doi: 10.1021/jp311006q. DOI
Belotti M., Martinelli A., Gianferri R., Brosio E. A Proton NMR Relaxation Study of Water Dynamics in Bovine Serum Albumin Nanoparticles. Phys Chem Chem Phys. 2010;12:516–522. doi: 10.1039/B911433E. PubMed DOI
Kleinberg R.L. Utility of NMR T2 Distributions, Connection with Capillary Pressure, Clay Effect, and Determination of the Surface Relaxivity Parameter Rho 2. Magn. Reson. Imaging. 1996;14:761–767. doi: 10.1016/S0730-725X(96)00161-0. PubMed DOI
Liaw H.-K., Kulkarni R., Chen S., Watson A.T. Characterization of Fluid Distributions in Porous Media by NMR Techniques. AIChE J. 1996;42:538–546. doi: 10.1002/aic.690420223. DOI