• This record comes from PubMed

Modeling and Measurement of an Ultrasound Power Delivery System for Charging Implantable Devices Using an AlN-Based pMUT as Receiver

. 2022 Dec 01 ; 13 (12) : . [epub] 20221201

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
SV4502261/SP2022/98 Biomedical Engineering Systems XVIII

Ultrasound power delivery can be considered a convenient technique for charging implantable medical devices. In this work, an intra-body system has been modeled to characterize the phenomenon of ultrasound power transmission. The proposed system comprises a Langevin transducer as transmitter and an AlN-based square piezoelectric micro-machined ultrasonic transducer as receiver. The medium layers, in which elastic waves propagate, were made by polydimethylsiloxane to mimic human tissue and stainless steel to replace the case of the implantable device. To characterize the behavior of the transducers, measurements of impedance and phase, velocity and displacement, and acoustic pressure field were carried out in the experimental activity. Then, voltage and power output were measured to analyze the performance of the ultrasound power delivery system. For a root mean square voltage input of approximately 35 V, the power density resulted in 21.6 µW cm-2. Such a result corresponds to the data obtained with simulation through a one-dimensional lumped parameter transmission line model. The methodology proposed to develop the ultrasound power delivery (UPD) system, as well as the use of non-toxic materials for the fabrication of the intra-body elements, are a valid design approach to raise awareness of using wireless power transfer techniques for charging implantable devices.

See more in PubMed

Amar A.B., Kouki A.B., Cao H. Power approaches for implantable medical devices. Sensors. 2015;15:28889–28914. doi: 10.3390/s151128889. PubMed DOI PMC

Sheng H., Zhang X., Liang J., Shao M., Xie E., Yu C., Lan W. Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv. Healthc. Mater. 2021;10:2100199. doi: 10.1002/adhm.202100199. PubMed DOI

Sette A.L., Seigneuret E., Reymond F., Chabardes S., Castrioto A., Boussat B., Moro E., Francois P., Fraix V. Battery longevity of neurostimulators in Parkinson disease: A historic cohort study. Brain Stimul. 2019;12:851–857. doi: 10.1016/j.brs.2019.02.006. PubMed DOI

Alam M.B., Munir M.B., Rattan R., Flanigan S., Adelstein E., Jain S., Saba S. Battery longevity in cardiac resynchronization therapy implantable cardioverter defibrillators. Europace. 2014;16:246–251. doi: 10.1093/europace/eut301. PubMed DOI

Ortiz-Catalan M. Ultrasound-powered tiny neural stimulators. Nat. Biomed. Eng. 2020;4:144–145. doi: 10.1038/s41551-020-0521-1. PubMed DOI

Chakrabartty S., Lajnef N., Elvin N.G., Elvin A. Toward Self-Powered Sensors and Circuits for Biomechanical Implants. In: Iniewski K., editor. VLSI Circuits for Biomedical Applications. Artech House Inc.; Norwood, MA, USA: 2008. pp. 75–109.

Zebda A., Alcaraz J.-P., Vadgama P., Shleev S., Minteer S.D., Boucher F., Cinquin P., Martin D.K. Challenges for successful implantation of biofuel cells. Bioelectrochemistry. 2018;124:57–72. doi: 10.1016/j.bioelechem.2018.05.011. PubMed DOI

Thimot J., Shepard K.L. Bioelectronic devices: Wirelessly powered implants. Nat. Biomed. Eng. 2017;1:0051. doi: 10.1038/s41551-017-0051. DOI

Marketing Clearance of Diagnostic Ultrasound Systems and Transducers. [(accessed on 27 September 2022)]; Available online: https://www.fda.gov/media/71100/download.

Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation. [(accessed on 27 September 2022)]; Available online: https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/1996/fcc96326.pdf.

IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. [(accessed on 27 September 2022)]. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1626482.

Harvey G., Gachagan A., Mutasa T. Review of high-power ultrasound-industrial applications and measurement methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014;61:481–495. doi: 10.1109/TUFFC.2014.2932. PubMed DOI

Medan M.S., Abd El-Aty A.M. Advances in ultrasonography and its applications in domestic ruminants and other farm animals reproduction. J. Adv. Res. 2010;1:123–128. doi: 10.1016/j.jare.2010.03.003. DOI

Eshky A., Cleland J., Ribeiro M.S., Sugden E., Richmond K., Renals S. Automatic audiovisual synchronisation for ultrasound tongue imaging. Speech Commun. 2021;132:83–95. doi: 10.1016/j.specom.2021.05.008. DOI

Ozeri S., Shmilovitz D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics. 2010;50:556–566. doi: 10.1016/j.ultras.2009.11.004. PubMed DOI

Mazzilli F., Lafon C., Dehollain C. A 10.5 cm ultrasound link for deep implanted medical devices. IEEE Trans. Biomed. Circuits Syst. 2014;8:738–750. doi: 10.1109/TBCAS.2013.2295403. PubMed DOI

Radziemski L., Makin I.R.S. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies. Ultrasonics. 2016;64:1–9. doi: 10.1016/j.ultras.2015.07.012. PubMed DOI PMC

Huang Y., Zhao J., Sun W., Yang H., Liu Y. Investigation and Modeling of Multi-Node Body Channel Wireless Power Transfer. Sensors. 2019;20:156. doi: 10.3390/s20010156. PubMed DOI PMC

Chang T.C., Weber M.J., Charthad J., Baltsavias S., Arbabian A. End-to-end design of efficient ultrasonic power links for scaling towards submillimeter implantable receivers. IEEE Trans. Biomed. Circuits Syst. 2018;12:1100–1111. doi: 10.1109/TBCAS.2018.2871470. PubMed DOI PMC

Arbabian A., Chang T.C., Wang M.L., Charthad J., Baltsavias S., Fallahpour M., Weber M.J. Sound Technologies, Sound Bodies. IEEE Microw. Mag. 2016;17:39–54. doi: 10.1109/MMM.2016.2608638. DOI

Basaeri H., Christensen D.B., Roundy S. A review of acoustic power transfer for bio-medical implants. Smart Mater. Struct. 2016;25:123001. doi: 10.1088/0964-1726/25/12/123001. DOI

Laursen K., Rashidi A., Hosseini S., Mondal T., Corbett B., Moradi F. Ultrasonically Powered Compact Implantable Dust for Optogenetics. IEEE Trans. Biomed. Circuits Syst. 2020;14:583–594. doi: 10.1109/TBCAS.2020.2984921. PubMed DOI

Chang T.C., Weber M.J., Wang M.L., Charthad J., Khuri-Yakub B.T., Arbabian A. Design of Tunable Ultrasonic Receivers for Efficient Powering of Implantable Medical Devices With Reconfigurable Power Loads. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016;63:1554–1562. doi: 10.1109/TUFFC.2016.2606655. PubMed DOI

Shi Q., Wang T., Lee C. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices. Sci. Rep. 2016;6:24946. doi: 10.1038/srep24946. PubMed DOI PMC

Eovino B.E., Liang Y., Lin L. Concentric PMUT Arrays for Focused Ultrasound and High Intensity Applications; Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); Seoul, Republic of Korea. 25–29 January 2019; DOI

Wang L., Chiu Y., Gong D., Ma S., Yang Y., Li H., Lee H., Liu H., Jin Y. Fabrication Process and Performance Analysis of AlN based Piezoelectric Micromachined Ultrasonic Transducer with a Suspended Structure; Proceedings of the 14th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); Bangkok, Thailand. 11–14 April 2019; DOI

Alasatri S., Rufer L., Lee J.E.-Y. AlN-on-Si Square Diaphragm Piezoelectric Micromachined Ultrasonic Transducer with Extended Range of Detection. Proceedings. 2018;2:913. doi: 10.3390/proceedings2130913. DOI

Sammoura F., Shelton S., Akhbari S., Horsley D., Lin L. A Two-Port Piezoelectric Micromachined Ultrasonic Transducer; Proceedings of the Joint IEEE International Symposium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices and Workshop on Piezoresponse Force Microscopy (ISAF/IWATMD/PFM); State College, PA, USA. 7–11 May 2014; DOI

Zhu Q., Chen T., Liu H., Sun L., Wang T., Lee C., Le X., Xie J. An AlN-based piezoelectric micro-machined ultrasonic transducer (pMUT) array; Proceedings of the 16th IEEE International Conference on Nanotechnology (IEEE NANO); Sendai, Japan. 22–25 August 2016; DOI

Halbach A., Gijsenbergh P., Jeong Y., Billen M., Chare C., Gao H., Torri G.B., Cheyns D., Rottenberg X., Rochus V. Modelling of display-compatible piezoelectric micromachined ultrasonic transducers for haptic feedback; Proceedings of the 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE); Hannover, Germany. 24–27 March 2019; DOI

Huang C.H., Demi L., Torri G.B., Mao S., Billen M., Jeong Y., Cheyns D., Rottenberg X., Rochus V. Display compatible pMUT device for mid air ultrasound gesture recognition; Proceedings of the 11th Annual TechConnect World Innovation Conference and Expo, Held Jointly with the 20th Annual Nanotech Conference and Expo, the SBIR/STTR Spring Innovation Conference, and the Defense TechConnect DTC Spring Conference; Anaheim, CA, USA. 13–16 May 2018;

Griffin B.A., Williams M.D., Coffman C.S., Sheplak M. Aluminum nitride ultrasonic air-coupled actuator. J. Microelectromechanical Syst. 2011;20:476–486. doi: 10.1109/JMEMS.2011.2111357. DOI

Przybyla R.J., Shelton S.E., Guedes A., Izyumin I.I., Kline M.H., Horsley D.A., Boser B.E. In-air rangefinding with an AlN piezoelectric micromachined ultrasound transducer. IEEE Sens. J. 2011;11:2690–2697. doi: 10.1109/JSEN.2011.2157490. DOI

Alasatri S., Mak K.L., Benserhir J., Lee J.E.-Y., Rufer L. Air-coupled Ultrasonic Rangefinder with Meter-long Detection Range Based on a Dual-electrode PMUT Fabricated Using a Multi-user MEMS Process; Proceedings of the 18th IEEE Sensors Conference; Montreal, QC, Canada. 27–30 October 2019; DOI

Basaeri H., Yu Y., Young D., Roundy S. A MEMS-Scale Ultrasonic Power Receiver for Biomedical Implants. IEEE Sens. Lett. 2019;3:8664093. doi: 10.1109/LSENS.2019.2904194. DOI

Rebelo R., Barbosa A.I., Correlo V.M., Reis R.L. An outlook on implantable biosensors for personalized medicine. Engineering. 2021;7:1696–1699. doi: 10.1016/j.eng.2021.08.010. DOI

Horsley D.A., Rozen O., Lu Y., Shelton S., Guedes A., Przybyla R., Tang H.-Y., Boser B.E. Piezoelectric Micromachined Ultrasonic Transducers for Human-Machine Interfaces and Biometric Sensing; Proceedings of the IEEE Sensors Conference; Busan, Republic of Korea. 1–4 November 2015; DOI

Cowen A., Hames G., Glukh K., Hardy B. PiezoMUMPs Design Handbook. MEMSCAP Inc.; Windsor, ON, Canada: 2013.

Bolt Clamped Langevin Transducer 40 KHz. [(accessed on 27 September 2022)]. Available online: https://www.steminc.com/PZT/en/bolt-clamped-langevin-tranducer-40-khz.

Yoo S., Lee J., Joo H., Sunwoo S.-H., Kim S., Kim D.-H. Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Adv. Healthc. Mater. 2021;10:2100614. doi: 10.1002/adhm.202100614. PubMed DOI

Khan S.R., Pavuluri S.K., Cummins G., Desmulliez M.P.Y. Wireless power transfer techniques for implantable medical devices: A review. Sensors. 2020;20:3487. doi: 10.3390/s20123487. PubMed DOI PMC

Todar M.T., Guido F., Algieri L., Mastronardi V.M., Desmaele D., Epifani G., De Vittorio M. Biocompatible, flexible, and compliant energy harvesters based on piezoelectric thin films. IEEE Trans. Nanotechnol. 2018;17:220–230. doi: 10.1109/TNANO.2017.2789300. DOI

Fei C., Liu X., Zhu B., Li D., Yang X., Yang Y., Zhou Q. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy. 2018;51:146–161. doi: 10.1016/j.nanoen.2018.06.062. DOI

Peres P.L.D., de Souza C.R., Bonatti I.S. ABCD matrix: A unique tool for linear two-wire transmission line modelling. Int. J. Electr. Eng. Educ. 2003;40:220–229. doi: 10.7227/IJEEE.40.3.5. DOI

Frickey D.A. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans. Microw. Theory Tech. 1994;42:205–211. doi: 10.1109/22.275248. DOI

Turner B.L., Senevirathne S., Kilgour K., McArt D., Biggs M., Menegatti S., Daniele M.A. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications. Adv. Healthc. Mater. 2021;10:2100986. doi: 10.1002/adhm.202100986. PubMed DOI

Sun Y., Gao X., Wang H., Chen Z., Yang Z. A wideband ultrasonic energy harvester using 1-3 piezoelectric composites with non-uniform thickness. Appl. Phys. Lett. 2018;112:043903. doi: 10.1063/1.5012822. DOI

He Q., Liu J., Yang B., Wang X., Chen X., Yang C. MEMS-based ultrasonic transducer as the receiver for wireless power supply of the implantable microdevices. Sens. Actuator A Phys. 2014;219:65–72. doi: 10.1016/j.sna.2014.07.008. DOI

Joseph J., Singh S.G., Vanjari S.R.K. Piezoelectric Micromachined Ultrasonic Transducer Using Silk Piezoelectric Thin Film. IEEE Electron. Device Lett. 2018;39:749–752. doi: 10.1109/LED.2018.2816646. DOI

Jiang L., Yang Y., Chen R., Lu G., Li R., Xing J., Shung K.K., Humayun M.S., Zhu J., Chen Y., et al. Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv. Funct. Mater. 2019;29:1902522. doi: 10.1002/adfm.201902522. DOI

Al-Shidaifat A., Kumar S., Chakrabartty S., Song H.J. A Conceptual Investigation at the Interface between Wireless Power Devices and CMOS Neuron IC for Retinal Image Acquisition. Appl. Sci. 2020;10:6154. doi: 10.3390/app10186154. DOI

Liu X., Chen D., Yang D., Chen X., Le X., Xie J. A Computational Piezoelectric Micro-Machined Ultrasonic Transducer Toward Acoustic Communication. IEEE Electron. Device Lett. 2019;40:965–968. doi: 10.1109/LED.2019.2910174. DOI

Defoort M., Rufer L., Fesquet L., Basrour S. A dynamical approach to generate chaos in a micromechanical resonator. Microsyst. Nanoeng. 2021;7:17. doi: 10.1038/s41378-021-00241-6. PubMed DOI PMC

Ahmadi F., McLoughlin I.V., Chauhan S., ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog. Biophys. Mol. Biol. 2012;108:119–138. doi: 10.1016/j.pbiomolbio.2012.01.004. PubMed DOI

Boucaud A., Montharu J., Machet L., Arbeille B., Machet M.C., Patat F., Vaillant L. Clinical, histologic, and electron microscopy study of skin exposed to low-frequency ultrasound. Anat. Rec. 2001;264:114–119. doi: 10.1002/ar.1122. PubMed DOI

Kim S., Ho J.S., Chen L.Y., Poon A.S.Y. Wireless power transfer to a cardiac implant. Appl. Phys. Lett. 2012;101:073701. doi: 10.1063/1.4745600. DOI

Kazanc O., Maloberti F., Dehollain C. Simulation oriented rectenna design methodology for remote powering of wireless sensor systems; Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS); Seoul, Republic of Korea. 20–23 May 2012; pp. 2877–2880. DOI

Ko Y.Y., Ho S.L., Fu W.N., Zhang X. A novel hybrid resonator for wireless power delivery in bio-implantable devices. IEEE Trans. Magn. 2012;48:4518–4521. doi: 10.1109/TMAG.2012.2200033. DOI

Cong P., Suster M.A., Chaimanonart N., Young D.J. Wireless power recharging for implantable bladder pressure sensor; Proceedings of the IEEE Sensors Conference (SENSORS); Christchurch, New Zealand. 25–28 October 2009; pp. 1670–1673. DOI

Sanni A., Vilches A., Toumazou C. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices. IEEE Trans. Biomed. Circuits Syst. 2012;6:297–308. doi: 10.1109/TBCAS.2011.2175390. PubMed DOI

Mazzilli F., Thoppay P.E., Praplan V., Dehollaini C. Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs); Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS); Seoul, Republic of Korea. 20–23 May 2012; pp. 2865–2868. DOI

Jiang L., Yang Y., Chen R., Lu G., Li R., Li D., Humayun M.S., Shung K.K., Zhu J., Chen Y. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. Nano Energy. 2019;56:216–224. doi: 10.1016/j.nanoen.2018.11.052. PubMed DOI PMC

Herrera B., Pop F., Cassella C., Rinaldi M. AlN PMUT-based Ultrasonic Power Transfer Links for Implantable Electronics; Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII; Berlin, Germany. 23–27 June 2019; pp. 861–864. DOI

Gong D., Ma S., Chiu Y., Lee H., Jin Y. Study of the properties of AlN PMUT used as a wireless power receiver; Proceedings of the IEEE 69th Electronic Components and Technology Conference (ECTC); Las Vegas, NV, USA. 28–31 May 2019; pp. 1503–1508. DOI

Rong Z., Zhang M., Ning Y., Pang W. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Sci. Rep. 2022;12:16174. doi: 10.1038/s41598-022-19693-5. PubMed DOI PMC

Moerke C., Wolff A., Ince H., Ortak J., Oner A. New strategies for energy supply of cardiac implantable devices. Herzschr. Elektrophys. 2022;33:224–231. doi: 10.1007/s00399-022-00852-0. PubMed DOI PMC

Zhang J.-G., Long Z.-L., Ma W.-J., Hu G.-H., Li Y.-M. Electromechanical dynamics model of ultrasonic transducer in ultrasonic machining based on equivalent circuit approach. Sensors. 2019;19:1405. doi: 10.3390/s19061405. PubMed DOI PMC

Sherrit S., Leary S.P., Dolgin B.P., Bar-Cohen Y. Comparison of the Mason and KLM equivalent circuits for piezoelectric resonators in the thickness mode; Proceedings of the IEEE Ultrasonics Symposium; Tahoe, NV, USA. 17–20 October 1999; pp. 921–926. DOI

Kim J., Lee J. Theoretical Resonance Analysis of Langevin Transducers with Equivalent Circuit Models for Therapeutic Ultrasound. J. Electr. Eng. Technol. 2019;14:2437–2445. doi: 10.1007/s42835-019-00275-x. DOI

Meeker T.R. Publication and proposed revision of ANSI/IEEE standard 176-1987 “ANSI/IEEE standard on piezoelectricity”. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1996;43:717–771. doi: 10.1109/TUFFC.1996.535477. DOI

Uchino K. Advanced Piezoelectric Materials: Science and Technology. 2nd ed. Woodhead Publishing; Sawston, UK: 2017. High-Power Piezoelectrics and Loss Mechanisms; pp. 647–754.

Ashby M.F. Materials Selection in Mechanical Design. 4th ed. Elsevier Ltd.; London, UK: 2011. Material Property Charts; pp. 57–96.

Horsley D., Lu Y., Rozen O. Flexural Piezoelectric Resonators. In: Bhurgra H., Piazza G., editors. Piezoelectric MEMS Resonators. Springer; Cham, Switzerland: 2017. pp. 153–173.

Marzencki M., Basrour S. Modeling of Piezoelectric MEMS Vibration Energy Harvesters. In: Choudhary V., Iniewski K., editors. MEMS: Fundamental Technology and Applications. CRC Press; Boca Raton, FL, USA: 2013. pp. 131–160.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...