Antiproliferative Activity of Buddleja saligna (Willd.) against Melanoma and In Vivo Modulation of Angiogenesis

. 2022 Nov 30 ; 15 (12) : . [epub] 20221130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36558948

Grantová podpora
NA University of Pretoria
SFD13080220333 National Research Foundation-DAAD
DST/CON 0059/2019 The Department of Science and Innovation, South Africa
NA The Innovation Hub, South Africa
NA L'Oreal-UNESCO
UIDP/04378/2020 and UIDB/04378/2020 FCT-MCTES

Melanoma cells secrete pro-angiogenic factors, which stimulates growth, proliferation and metastasis, and therefore are key therapeutic targets. Buddleja saligna (BS), and an isolated triterpenoid mixture (DT-BS-01) showed a fifty percent inhibitory concentration (IC50) of 33.80 ± 1.02 and 5.45 ± 0.19 µg/mL, respectively, against melanoma cells (UCT-MEL-1) with selectivity index (SI) values of 1.64 and 5.06 compared to keratinocytes (HaCat). Cyclooxygenase-2 (COX-2) inhibition was observed with IC50 values of 35.06 ± 2.96 (BS) and 26.40 ± 4.19 µg/mL (DT-BS-01). BS (30 µg/mL) significantly inhibited interleukin (IL)-6 (83.26 ± 17.60%) and IL-8 (100 ± 0.2%) production, whereas DT-BS-01 (5 µg/mL) showed 51.07 ± 2.83 (IL-6) and 0 ± 6.7% (IL-8) inhibition. Significant vascular endothelial growth factor (VEGF) inhibition, by 15.84 ± 4.54 and 12.21 ± 3.48%, respectively, was observed. In the ex ovo chick embryo yolk sac membrane assay (YSM), BS (15 µg/egg) significantly reduced new blood vessel formation, with 53.34 ± 11.64% newly formed vessels. Silver and palladium BS nanoparticles displayed noteworthy SI values. This is the first report on the significant anti-angiogenic activity of BS and DT-BS-01 and should be considered for preclinical trials as there are currently no US Food and Drug Administration (FDA) approved drugs to inhibit angiogenesis in melanoma.

Zobrazit více v PubMed

The Skin Cancer Foundation Skin Cancer Facts & Statistics. [(accessed on 7 January 2021)]. Available online: https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/

Khazaei Z., Ghorat F., Jarrahi A.M., Adineh H.A., Sohrabivafa M., Goodarzi E. Global Incidence and Mortality of Skin Cancer by Histological Subtype and Its Relationship with the Human Development Index (HDI); an Ecology Study in 2018. World Cancer Res. J. 2019;6:e1265.

Hanahan D., Weinberg R.A. The Hallmarks of Cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI

Emmett M.S., Dewing D., Pritchard-Jones R.O. Angiogenesis and Melanoma-From Basic Science to Clinical Trials. Am. J. Cancer Res. 2011;1:868. PubMed PMC

Hubler W.R., Wolf J.E. Melanoma.Tumor Angiogenesis and Human Neoplasia. Cancer. 1976;38:187–192. doi: 10.1002/1097-0142(197607)38:1<187::AID-CNCR2820380129>3.0.CO;2-D. PubMed DOI

Warren B., Shubik P. The Growth of the Blood Supply to Melanoma Transplants in the Hamster Cheek Pouch-PubMed. Lab. Investig. 1966;15:464–478. PubMed

Mahabeleshwar G.H., Byzova T.V. Angiogenesis in Melanoma. Semin. Oncol. 2007;34:555–565. doi: 10.1053/j.seminoncol.2007.09.009. PubMed DOI PMC

Bar-Eli M. Role of Interleukin-8 in Tumor Growth and Metastasis of Human Melanoma. Pathobiology. 1999;67:12–18. doi: 10.1159/000028045. PubMed DOI

Nürnberg W., Tobias D., Otto F., Henz B.M., Schadendorf D. Expression of Interleukin-8 Detected by in Situ Hybridization Correlates with Worse Prognosis in Primary Cutaneous Melanoma. J. Pathol. 1999;189:546–551. doi: 10.1002/(SICI)1096-9896(199912)189:4<546::AID-PATH487>3.0.CO;2-L. PubMed DOI

Ugurel S., Rappl G., Tilgen W., Reinhold U. Increased Serum Concentration of Angiogenic Factors in Malignant Melanoma Patients Correlates with Tumor Progression and Survival. J. Clin. Oncol. 2001;19:577–583. doi: 10.1200/JCO.2001.19.2.577. PubMed DOI

Mahler D.A., Huang S., Tabrizi M., Bell G.M. Efficacy and Safety of a Monoclonal Antibody Recognizing Lnterleukin-8 in COPD: A Pilot Study. Chest. 2004;126:926–934. doi: 10.1378/chest.126.3.926. PubMed DOI

Naugler W.E., Karin M. The Wolf in Sheep’s Clothing: The Role of Interleukin-6 in Immunity, Inflammation and Cancer. Trends Mol. Med. 2008;14:109–119. doi: 10.1016/j.molmed.2007.12.007. PubMed DOI

Hoejberg L., Bastholt L., Schmidt H. Interleukin-6 and Melanoma. Melanoma Res. 2012;22:327–333. doi: 10.1097/CMR.0b013e3283543d72. PubMed DOI

Moretti S., Pinzi C., Spallanzani A., Berti E., Chiarugi A., Mazzoli S., Fabiani M., Vallecchi C., Herlyn M. Immunohistochemical Evidence of Cytokine Networks during Progression of Human Melanocytic Lesions. Int. J. Cancer. 1999;84:160–168. doi: 10.1002/(SICI)1097-0215(19990420)84:2<160::AID-IJC12>3.0.CO;2-R. PubMed DOI

Goulet A., Einsphar J., Alberts D., Beas A., Burk C., Bhattacharyya A., Bangert J., Harmon J., Fujiwara H., Koki A., et al. Analysis of Cyclooxygenase 2 (COX-2) Expression during Malignant Melanoma Progression-PubMed. Cancer Biol. Ther. 2003;2:713–718. doi: 10.4161/cbt.2.6.627. PubMed DOI

Wu W.K.K., Yiu Sung J.J., Lee C.W., Yu J., Cho C.H. Cyclooxygenase-2 in Tumorigenesis of Gastrointestinal Cancers: An Update on the Molecular Mechanisms. Cancer Lett. 2010;295:7–16. doi: 10.1016/j.canlet.2010.03.015. PubMed DOI

National Cancer Institute Bevacizumab. [(accessed on 7 January 2021)]; Available online: https://www.cancer.gov/about-cancer/treatment/drugs/bevacizumab.

Chanda N., Kattumuri V., Shukla R., Zambre A., Katti K., Upendran A., Kulkarni R.R. Bombesin Functionalized Gold Nanoparticles Show in Vitro and in Vivo Cancer Receptor Specificity. Proc. Natl. Acad. Sci. USA. 2010;107:8760–8765. doi: 10.1073/pnas.1002143107. PubMed DOI PMC

Thipe V.C., Amiri K.P., Bloebaum P., Raphael A.K., Khoobchandani M., Katti K.K., Jurisson S.S., Katti K.V. Development of Resveratrol-Conjugated Gold Nanoparticles: Interrelationship of Increased Resveratrol Corona on Anti-Tumor Efficacy against Breast, Pancreatic and Prostate Cancers. Int. J. Nanomed. 2019;14:4413–4428. doi: 10.2147/IJN.S204443. PubMed DOI PMC

Tangthong T., Piroonpan T., Thipe V.C., Khoobchandani M., Katti K., Katti K.V., Pasanphan W. Water-Soluble Chitosan Conjugated DOTA-Bombesin Peptide Capped Gold Nanoparticles as a Targeted Therapeutic Agent for Prostate Cancer. Nanotechnol. Sci. Appl. 2021;14:69–89. doi: 10.2147/NSA.S301942. PubMed DOI PMC

Khoobchandani M., Katti K.K., Karikachery A.R., Thipe V.C., Bloebaum P.L.R., Katti K.V. Biotechnology Products in Everyday Life. Springer International Publishing; Cham, Switzerland: 2019. Targeted Phytochemical-Conjugated Gold Nanoparticles in Cancer Treatment.

Khoobchandani M., Katti K.K., Karikachery A.R., Thipe V.C., Srisrimal D., Dhurvas Mohandoss D.K., Darshakumar R.D., Joshi C.M., Katti V.K. New Approaches in Breast Cancer Therapy Through Green Nanotechnology and Nano-Ayurvedic Medicine-Pre-Clinical and Pilot Human Clinical Investigations. Int. J. Nanomed. 2020;15:181–197. doi: 10.2147/IJN.S219042. PubMed DOI PMC

Roma-Rodrigues C., Fernandes A.R., Baptista P. V Counteracting the Effect of Leukemia Exosomes by Antiangiogenic Gold Nanoparticles. Int. J. Nanomed. 2019;14:6843–6854. doi: 10.2147/IJN.S215711. PubMed DOI PMC

Baharara J., Namvar F., Mousavi M., Ramezani T., Mohamad R. Anti-Angiogenesis Effect of Biogenic Silver Nanoparticles Synthesized Using Saliva Officinalis on Chick Chorioalantoic Membrane (CAM) Molecules. 2014;19:13498–13508. doi: 10.3390/molecules190913498. PubMed DOI PMC

Li L., Zhang W., Desikan Seshadri V.D., Cao G. Synthesis and Characterization of Gold Nanoparticles from Marsdenia Tenacissima and Its Anticancer Activity of Liver Cancer HepG2 Cells. Artif. Cells Nanomed. Biotechnol. 2019;47:3029–3036. doi: 10.1080/21691401.2019.1642902. PubMed DOI

Anselmo A.C., Mitragotri S. Nanoparticles in the Clinic: An Update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC

Bonvalot S., Rutkowski P.L., Thariat J., Carrère S., Ducassou A., Sunyach M.-P., Agoston P., Hong A., Mervoyer A., Rastrelli M., et al. NBTXR3, a First-in-Class Radioenhancer Hafnium Oxide Nanoparticle, plus Radiotherapy versus Radiotherapy Alone in Patients with Locally Advanced Soft-Tissue Sarcoma (Act.In.Sarc): A Multicentre, Phase 2–3, Randomised, Controlled Trial. Lancet Oncol. 2019;20:1148–1159. doi: 10.1016/S1470-2045(19)30326-2. PubMed DOI

Đorđević S., Gonzalez M.M., Conejos-Sánchez I., Carreira B., Pozzi S., Acúrcio R.C., Satchi-Fainaro R., Florindo H.F., Vicent M.J. Current Hurdles to the Translation of Nanomedicines from Bench to the Clinic. Drug Deliv. Transl. Res. 2021;12:500–525. doi: 10.1007/s13346-021-01024-2. PubMed DOI PMC

Cragg G.M., Pezzuto J.M. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pract. 2016;25:41–59. doi: 10.1159/000443404. PubMed DOI PMC

Newman D., Cragg G. Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012;75:311–335. doi: 10.1021/np200906s. PubMed DOI PMC

Howes M.-J.R., Quave C.L., Collemare J., Tatsis E.C., Twilley D., Lulekal E., Farlow A., Li L., Cazar M.-E., Leaman D.J., et al. Molecules from Nature: Reconciling Biodiversity Conservation and Global Healthcare Imperatives for Sustainable Use of Medicinal Plants and Fungi. Plants People Planet. 2020;2:463–481. doi: 10.1002/ppp3.10138. DOI

Koh H.K., Geller A.C., Miller D.R., Grossbart T.A., Lew R.A. Prevention and Early Detection Strategies for Melanoma and Skin Cancer. Current Status. Arch. Dermatol. 1996;132:436–443. doi: 10.1001/archderm.1996.03890280098014. PubMed DOI

Aubrey A. Buddleja Saligna|PlantZAfrica. [(accessed on 30 October 2021)]. Available online: http://pza.sanbi.org/buddleja-saligna.

Su M., Huang J., Liu S., Xiao Y., Qin X., Liu J., Pi C., Luo T., Li J., Chen X., et al. The Anti-Angiogenic Effect and Novel Mechanisms of Action of Combretastatin A-4. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep28139. PubMed DOI PMC

Bamuamba K., Gammon D., Meyers P., Dijoux-Franca M., Scott G. Anti-Mycobacterial Activity of Five Plant Species Used as Traditional Medicines in the Western Cape Province (South Africa) J. Ethnopharmacol. 2008;117:385–390. doi: 10.1016/j.jep.2008.02.007. PubMed DOI

Chukwujekwu J., Amoo S., de Kock C., Smith P., Van Staden J. Antiplasmodial, Acetylcholinesterase and Alpha-Glucosidase Inhibitory and Cytotoxicity Properties of Buddleja Saligna. S. Afr. J. Bot. 2014;94:6–8. doi: 10.1016/j.sajb.2014.05.003. DOI

Singh A., Venugopala K., Khedr M., Pillay M., Nwaeze K., Coovadia Y., Shode F., Odhav B. Antimycobacterial, Docking and Molecular Dynamic Studies of Pentacyclic Triterpenes from Buddleja Saligna Leaves. J. Biomol. Struct. Dyn. 2017;35:2654–2664. doi: 10.1080/07391102.2016.1227725. PubMed DOI

Caunii A., Oprean C., Cristea M., Ivan A., Danciu C., Tatu C., Paunescu V., Marti D., Tzanakakis G., Spandidos D.A., et al. Effects of Ursolic and Oleanolic on SK-MEL-2 Melanoma Cells: In Vitro and in Vivo Assays. Int. J. Oncol. 2017;51:1651–1660. doi: 10.3892/ijo.2017.4160. PubMed DOI PMC

Mahmoudi M., Rabe S., Balali-Mood M., Karimi G., Tabasi N., Riahi-Zanjani B. Ursolic Acid Induced Apoptotic Cell Death Following Activation of Caspases in Isolated Human Melanoma Cells. Cell Biol. Int. 2015;39:230–236. doi: 10.1002/cbin.10376. PubMed DOI

Oprean C., Ivan A., Bojin F., Cristea M., Soica C., Drăghia L., Caunii A., Paunescu V., Tatu C. Selective in Vitro Anti-Melanoma Activity of Ursolic and Oleanolic Acids. Toxicol. Mech. Methods. 2018;28:148–156. doi: 10.1080/15376516.2017.1373881. PubMed DOI

Ghosh S., Bishayee K., Khuda-Bukhsh A. Oleanolic Acid Isolated from Ethanolic Extract of Phytolacca Decandra Induces Apoptosis in A375 Skin Melanoma Cells: Drug-DNA Interaction and Signaling Cascade. J. Integr. Med. 2014;12:102–114. doi: 10.1016/S2095-4964(14)60015-7. PubMed DOI

Chukwujekwu J.C., Rengasamy K.R.R., Kock C.A.d., Smith P.J., Slavětínská L.P., van Staden J. Alpha-Glucosidase Inhibitory and Antiplasmodial Properties of Terpenoids from the Leaves of Buddleja saligna Willd. J. Enzym. Inhib. Med. Chem. 2015;31:63–66. doi: 10.3109/14756366.2014.1003927. PubMed DOI

Pratheeshkumar P., Kuttan G. Oleanolic Acid Induces Apoptosis by Modulating P53, Bax, Bcl-2 and Caspase-3 Gene Expression and Regulates the Activation of Transcription Factors and Cytokine Profile in B16F. J. Environ. Pathol. Toxicol. Oncol. 2011;30:21–31. doi: 10.1615/JEnvironPatholToxicolOncol.v30.i1.30. PubMed DOI

Fuliaş A., Ledeţi I., Vlase G., Vlase T., Şoica C., Dehelean C., Oprean C., Bojin F., Şuta L.-M., Bercean V., et al. Thermal Degradation, Kinetic Analysis, and Apoptosis Induction in Human Melanoma for Oleanolic and Ursolic Acids. J. Therm. Anal. Calorim. 2015;125:759–768. doi: 10.1007/s10973-015-5052-8. DOI

Harmand P., Duval R., Delage C., Simon A. Ursolic Acid Induces Apoptosis through Mitochondrial Intrinsic Pathway and Caspase-3 Activation in M4Beu Melanoma Cells. Int. J. Cancer. 2005;114:1–11. doi: 10.1002/ijc.20588. PubMed DOI

Manu K., Kuttan G. Ursolic Acid Induces Apoptosis by Activating P53 and Caspase-3 Gene Expressions and Suppressing NF-KappaB Mediated Activation of Bcl-2 in B16F-10 Melanoma Cells. Int. Immunopharmacol. 2008;8:974–981. doi: 10.1016/j.intimp.2008.02.013. PubMed DOI

Ringbom T., Segura L., Noreen Y., Perera P., Bohlin L. Ursolic Acid from Plantago Major, a Selective Inhibitor of Cyclooxygenase-2 Catalyzed Prostaglandin Biosynthesis. J. Nat. Prod. 1998;61:1212–1215. doi: 10.1021/np980088i. PubMed DOI

Subbaramaiah K., Dannenberg A.J. Cyclooxygenase 2: A Molecular Target for Cancer Prevention and Treatment. Trends Pharmacol. Sci. 2003;24:96–102. doi: 10.1016/S0165-6147(02)00043-3. PubMed DOI

Kim M., Kim J., Han S., Kim H. Ursolic Acid Isolated from Guava Leaves Inhibits Inflammatory Mediators and Reactive Oxygen Species in LPS-Stimulated Macrophages. Immunopharmacol. Immunotoxicol. 2015;37:228–235. doi: 10.3109/08923973.2015.1021355. PubMed DOI

Li M., Han Z., Bei W., Rong X., Guo J., Hu X. Oleanolic Acid Attenuates Insulin Resistance via NF-ΚB to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells. Evid. Based. Complement. Alternat. Med. 2015;2015:643102. doi: 10.1155/2015/643102. PubMed DOI PMC

Kim H., Han S., Sung H., Park S., Kang M., Han S., Kang Y. Blockade of Visfatin Induction by Oleanolic Acid via Disturbing IL-6-TRAF6-NF-ΚB Signaling of Adipocytes. Exp. Biol. Med. 2014;239:284–292. doi: 10.1177/1535370213514511. PubMed DOI

Lee C., Wu S., Chen J., Li C., Lo H., Cheng W., Lin J., Chang Y., Hsiang C., Ho T. Eriobotrya Japonica Leaf and Its Triterpenes Inhibited Lipopolysaccharide-Induced Cytokines and Inducible Enzyme Production via the Nuclear Factor-KappaB Signaling Pathway in Lung Epithelial Cells. Am. J. Chin. Med. 2008;36:1185–1198. doi: 10.1142/S0192415X0800651X. PubMed DOI

Yang G., Zhang R., Lou B., Cheng K., Xiong J., Hu J. Chemical Constituents from Melastoma Dodecandrum and Their Inhibitory Activity on Interleukin-8 Production in HT-29 Cells. Nat. Prod. Res. 2014;28:1383–1387. doi: 10.1080/14786419.2014.903480. PubMed DOI

Kanjoormana M., Kuttan G. Antiangiogenic Activity of Ursolic Acid. Integr. Cancer Ther. 2010;9:224–235. doi: 10.1177/1534735410367647. PubMed DOI

Lee D.-H., Lee J., Jeon J., Kim K.-J., Yun J.-H., Jeong H.-S., Lee E.H., Koh Y.J., Cho C.-H. Oleanolic Acids Inhibit Vascular Endothelial Growth Factor Receptor 2 Signaling in Endothelial Cells: Implication for Anti-Angiogenic Therapy. Mol. Cells. 2018;41:780. doi: 10.14348/MOLCELLS.2018.0207. PubMed DOI PMC

Cárdenas C., Quesada A.R., Medina M.Á. Effects of Ursolic Acid on Different Steps of the Angiogenic Process. Biochem. Biophys. Res. Commun. 2004;320:402–408. doi: 10.1016/j.bbrc.2004.05.183. PubMed DOI

Sohn K., Lee H., Chung H., Young H., Yi S., Kim K. Anti-Angiogenic Activity of Triterpene Acids. Cancer Lett. 1995;94:213–218. doi: 10.1016/0304-3835(95)03856-R. PubMed DOI

Padalia H., Moteriya P., Chanda S. Green Synthesis of Silver Nanoparticles from Marigold Flower and Its Synergistic Antimicrobial Potential. Arab. J. Chem. 2015;8:732–741. doi: 10.1016/j.arabjc.2014.11.015. DOI

Elia P., Zach R., Hazan S., Kolusheva S., Porat Z., Zeiri Y. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Reducing Agents. Int. J. Nanomed. 2014;9:4021. doi: 10.2147/IJN.S57343. PubMed DOI PMC

Lebaschi S., Hekmati M., Veisi H. Green Synthesis of Palladium Nanoparticles Mediated by Black Tea Leaves (Camellia sinensis) Extract: Catalytic Activity in the Reduction of 4-Nitrophenol and Suzuki-Miyaura Coupling Reaction under Ligand-Free Conditions. J. Colloid Interface Sci. 2017;485:223–231. doi: 10.1016/j.jcis.2016.09.027. PubMed DOI

Twilley D., Moodley D., Rolfes H., Moodley I., McGaw L.J., Madikizela B., Summers B., Raaff L.A., Lategan M., Kgatuke L., et al. Ethanolic Extracts of South African Plants, Buddleja saligna Willd. and Helichrysum odoratissimum (L.) Sweet, as Multifunctional Ingredients in Sunscreen Formulations. S. Afr. J. Bot. 2021;137:171–182. doi: 10.1016/j.sajb.2020.10.010. DOI

Lall N., Henley-Smith C.J., Canha M.N.D., Oosthuizen C.B., Berrington D. Viability Reagent, PrestoBlue, in Comparison with Other Available Reagents, Utilized in Cytotoxicity and Antimicrobial Assays. Int. J. Microbiol. 2013;2013:420601. doi: 10.1155/2013/420601. PubMed DOI PMC

Reininger E.A., Bauer R. Prostaglandin-H-Synthase (PGHS)-1 and -2 Microtiter Assays for the Testing of Herbal Drugs and in Vitro Inhibition of PGHS-Isoenzyms by Polyunsaturated Fatty Acids from Platycodi Radix. Phytomedicine. 2006;13:164–169. doi: 10.1016/j.phymed.2005.03.006. PubMed DOI

Twilley D., Langhansová L., Palaniswamy D., Lall N. Evaluation of Traditionally Used Medicinal Plants for Anticancer, Antioxidant, Anti-Inflammatory and Anti-Viral (HPV-1) Activity. S. Afr. J. Bot. 2017;112:494–500. doi: 10.1016/j.sajb.2017.05.021. DOI

Arablou T., Aryaeian N., Khodaverdi S., Kolahdouz-Mohammadi R., Moradi Z., Rashidi N., Delbandi A.-A. The Effects of Resveratrol on the Expression of VEGF, TGF-β, and MMP-9 in Endometrial Stromal Cells of Women with Endometriosis. Sci. Rep. 2021;11:1–12. doi: 10.1038/s41598-021-85512-y. PubMed DOI PMC

Muhammad Nihad A.S., Deshpande R., Kale V.P., Bhonde R.R., Datar S.P. Establishment of an in Ovo Chick Embryo Yolk Sac Membrane (YSM) Assay for Pilot Screening of Potential Angiogenic and Anti-Angiogenic Agents. Cell Biol. Int. 2018;42:1474–1483. doi: 10.1002/CBIN.11051. PubMed DOI

Datar S., Shah R., Talele G., Bhonde R. In Vivo Screening of Potential Anti-Angiogenic Homeopathic Medicines Using Chick Embryo YSM Model. Cell Cell. Life Sci. J. 2020;5:1–6. doi: 10.23880/cclsj-16000158. DOI

Kuhnen S., Lemos P.M.M., Campestrini L.H., Ogliari J.B., Dias P.F., Maraschin M. Antiangiogenic Properties of Carotenoids: A Potential Role of Maize as Functional Food. J. Funct. Foods. 2009;1:284–290. doi: 10.1016/j.jff.2009.04.001. DOI

Wang H., Cheng-yu L., Wang X., Bao Y., Meng X., Yin W., Yu-xin L. Chick Yolk Sac Membrane Assay: A Novel Angiogenesis Model. J. Biol. Res. 2007;7:93–97.

Zhou Q., Qi C.L., Li Y., He X.D., Li J.C., Zhang Q.Q., Tian L., Zhang M., Han Z., Wang H., et al. A Novel Four-Step System for Screening Angiogenesis Inhibitors. Mol. Med. Rep. 2013;8:1734–1740. doi: 10.3892/mmr.2013.1704. PubMed DOI

Belleri M., Ribatti D., Nicoli S., Cotelli F., Forti L., Vannini V., Stivala L.A., Presta M. Antiangiogenic and Vascular-Targeting Activity of the Microtubule-Destabilizing Trans-Resveratrol Derivative 3,5,4′-Trimethoxystilbene. Mol. Pharmacol. 2005;67:1451–1459. doi: 10.1124/mol.104.009043. PubMed DOI

Belleri M., Ribatti D., Savio M., Stivala L.A., Forti L., Tanghetti E., Alessi P., Coltrini D., Bugatti A., Mitola S., et al. Alphavbeta3 Integrin-Dependent Antiangiogenic Activity of Resveratrol Stereoisomers. Mol. Cancer Ther. 2008;7:3761–3770. doi: 10.1158/1535-7163.MCT-07-2351. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...