Ab-initio evaluation of acid influence on chemical stability of hydrophilic diglycolamides

. 2022 ; 9 () : 1063022. [epub] 20221207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36567948

Diglycolamides (DGA) form one of the most promising groups of organic ligands used in bio-inspired solvent extraction processes of lanthanide and actinide ions. Continuous experimental and theoretical research is still performed in order to further improve their application properties including their chemical stability in the real extraction environment. This work provides results of our theoretical approach focused on inclusion of an acid influence on the DGAs chemical structure, treated in frame of the density functional theory. Three different models describing the acid action are proposed and investigated in attempt to increase the resulting accuracy of the chemical stability predictions based on verified theoretical descriptors. The procedure is applied and tested on the set of selected hydrophilic DGA representatives. Comparison of the model results obtained with and without acid action shows that two types of protection effects may occur: a 'direct' protection, accompanied by an explicit change of the ligand stability indicators, and an 'indirect' one consisting in reaction of acid molecules with radicals preceding the contact of latter with the extracting ligands. The possibility of the direct acid protection route is supported by the significant decrease of the Fukui charges found with the acid models included. On the other hand, there is in general no significant difference of trends in the calculated chemical stability descriptors suggesting that an indirect mechanism must be also considered in order to explain the experimentally observed protective role of acids on the chemical stability of investigated DGA derivatives.

Zobrazit více v PubMed

Beck A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (7), 5648–5652. 10.1063/1.464913 DOI

Delley B. (1990). An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92 (1), 508–517. 10.1063/1.458452 DOI

Delley B. (2000). From molecules to solids with the DMol 3 approach. J. Chem. Phys. 113 (18), 7756–7764. 10.1063/1.1316015 DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., et al. (2013). Gaussian 09, revision D.01. Wallingford, CT: Gaussian, Inc.

Fukui K. (1982). Role of frontier orbitals in chemical reactions. Science 218 (4574), 747–754. 10.1126/science.218.4574.747 PubMed DOI

Galan H., Zarzana C. A., Wilden A., Nunez A., Schmidt H., Egberink R. J. M., et al. (2015). Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling. Dalton Trans. 44, 18049–18056. 10.1039/c5dt02484f PubMed DOI

Glendening E., Badenhoop J., Reed A., Carpenter J., Bohmann J., Morales C., et al. (2013). Natural bond orbital analysis program: NBO 6.0. Madison, WI: Theoretical Chemistry Institute, University of Wisconsin.

Grimme S., Antony J., Ehrlich S., Krieg H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132 (15), 154104. 10.1063/1.3382344 PubMed DOI

Grimme S., Ehrlich S., Goerigk L. (2011). Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32 (7), 1456–1465. 10.1002/jcc.21759 PubMed DOI

Grimme S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27 (15), 1787–1799. 10.1002/jcc.20495 PubMed DOI

Horne G. P., Wilden A., Mezyk S. P., Twight L., Hupert M., Stärk A., et al. (2019). Gamma radiolysis of hydrophilic diglycolamide ligands in concentrated aqueous nitrate solution. Dalton Trans. 48 (45), 17005–17013. 10.1039/c9dt03918j PubMed DOI

Klamt A., Schüürmann G. (1993). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 (5), 799–805. 10.1039/p29930000799 DOI

Koubský T., Luštinec J. (2018). Application of quantum mechanical simulations for studying the radiolytic stability of prospective extractants in the nuclear fuel cycle. J. Radioanal. Nucl. Chem. 318 (3), 2407–2413. 10.1007/s10967-018-6225-2 DOI

Koubský T., Fojtíková J., Kalvoda L. (2017). Radical degradation stability of ether linkage in N, N, N′, N′-tetraoctyldiglycolamide and related organic extractants: A density functional study. Prog. Nucl. Energy 94, 208–215. 10.1016/j.pnucene.2016.07.010 DOI

Lumetta G. J., Gelis A. V., Carter J. C., Niver C. M., Smoot M. R. (2014). The actinide-lanthanide separation concept. Solvent Extr. Ion Exch. 32 (4), 333–347. 10.1080/07366299.2014.895638 DOI

Mattocks J. A., Cotruvo J. A. (2020). Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem. Soc. Rev. 49, 8315–8334. 10.1039/d0cs00653j PubMed DOI

Matveev P., Mitrofanov A., Petrov V., Zhokhov S., Smirnova A., Ustynyuk Y. A., et al. (2017). Testing a simple approach for theoretical evaluation of radiolysis products in extraction systems. A case of N, O-donor ligands for Am/Eu separation. RSC Adv. 7 (87), 55441–55449. 10.1039/c7ra11622e DOI

Miertuš S., Scrocco E., Tomasi J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55 (1), 117–129. 10.1016/0301-0104(81)85090-2 DOI

Morell C., Grand A., Toro-Labbe A. (2005). New dual descriptor for chemical reactivity. J. Phys. Chem. A 109 (1), 205–212. 10.1021/jp046577a PubMed DOI

Morell C., Grand A., Toro-Labbé A. (2006). Theoretical support for using the Δf(r) descriptor. Chem. Phys. Lett. 425 (4-6), 342–346. 10.1016/j.cplett.2006.05.003 DOI

Parr R. G., Yang W. (1989). Density functional theory of atoms and molecules, sv. 1. New York: Oxford University Press.

Petersson G. A., Al-Laham M. A. (1991). A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94 (9), 6081–6090. 10.1063/1.460447 DOI

Petersson G. A., Bennett A., Tensfeldt T. G., Al-Laham M. A., Shirley W. A., Mantzaris J. (1988). A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89 (4), 2193–2218. 10.1063/1.455064 DOI

Rostaing C., Poinssot C., Warin D., Baron P., Lorraina B. (2012). Development and validation of the EXAm separation process for single Am recycling. Procedia Chem. 7, 367–373. 10.1016/j.proche.2012.10.057 DOI

Sasaki Y., Sugo Y., Kitatsuji Y., Kirishima A., Kimura T., Choppin G. R. (2007). Complexation and back extraction of various metals by water-soluble diglycolamide. Anal. Sci. 23 (6), 727–731. 10.2116/analsci.23.727 PubMed DOI

Smirnova A., Mitrofanov A., Matveev P., Baygildiev T., Petrov V. (2020). A search of a quantitative quantum-chemical approach for radiolytic stability prediction. Phys. Chem. Chem. Phys. 22 (26), 14992–14997. 10.1039/d0cp01786h PubMed DOI

Tomasi J., Persico M. (1994). Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94 (7), 2027–2094. 10.1021/cr00031a013 DOI

Tomasi J., Mennucci B., Cammi R. (2005). Quantum mechanical continuum solvation models. Chem. Rev. 105 (8), 2999–3093. 10.1021/cr9904009 PubMed DOI

Veliscek-Carolan J. (2016). Separation of actinides from spent nuclear fuel: A review. J. Hazard. Mater. 318, 266–281. 10.1016/j.jhazmat.2016.07.027 PubMed DOI

Wiberg K. B. (1968). Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24 (3), 1083–1096. 10.1016/0040-4020(68)88057-3 DOI

Wilden A., Mincher B. J., Mezyk S. P., Twight L., Rosciolo-Johnson K. M., Zarzana C. A., et al. (2018). Radiolytic and hydrolytic degradation of the hydrophilic diglycolamides. Solvent Extr. Ion Exch. 36 (4), 347–359. 10.1080/07366299.2018.1495384 DOI

Yang W., Parr R. G. (1985). Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. U. S. A. 82 (20), 6723–6726. 10.1073/pnas.82.20.6723 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...