Post COVID-19 ENERGY sustainability and carbon emissions neutrality
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36570560
PubMed Central
PMC9761747
DOI
10.1016/j.energy.2021.122801
PII: S0360-5442(21)03050-4
Knihovny.cz E-zdroje
- Klíčová slova
- Emission neutrality, Energy efficiency, Energy sustainability, Novel material, Smart energy,
- Publikační typ
- časopisecké články MeSH
This review covers the recent advancements in selected emerging energy sectors, emphasising carbon emission neutrality and energy sustainability in the post-COVID-19 era. It benefited from the latest development reported in the Virtual Special Issue of ENERGY dedicated to the 6th International Conference on Low Carbon Asia and Beyond (ICLCA'20) and the 4th Sustainable Process Integration Laboratory Scientific Conference (SPIL'20). As nations bind together to tackle global climate change, one of the urgent needs is the energy sector's transition from fossil-fuel reliant to a more sustainable carbon-free solution. Recent progress shows that advancement in energy efficiency modelling of components and energy systems has greatly facilitated the development of more complex and efficient energy systems. The scope of energy system modelling can be based on temporal, spatial and technical resolutions. The emergence of novel materials such as MXene, metal-organic framework and flexible phase change materials have shown promising energy conversion efficiency. The integration of the internet of things (IoT) with an energy storage system and renewable energy supplies has led to the development of a smart energy system that effectively connects the power producer and end-users, thereby allowing more efficient management of energy flow and consumption. The future smart energy system has been redefined to include all energy sectors via a cross-sectoral integration approach, paving the way for the greater utilization of renewable energy. This review highlights that energy system efficiency and sustainability can be improved via innovations in smart energy systems, novel energy materials and low carbon technologies. Their impacts on the environment, resource availability and social well-being need to be holistically considered and supported by diverse solutions, in alignment with the sustainable development goal of Affordable and Clean Energy (SDG 7) and other related SDGs (1, 8, 9, 11,13,15 and 17), as put forth by the United Nations.
Zobrazit více v PubMed
WRI . 2021. World Resources Institute, 4 charts explain greenhouse gas emission by countries and sectors.www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors
Fan Y.V., Perry S., Klemeš J.J., Lee C.T. A review on air emissions assessment: Transportation. J Clean Prod. 2018;194:673–684.
Wang L., Fan Y.V., Varbanov P.S., Alwi S.R.W., Klemeš J.J. Water footprints and virtual water flows embodied in the power supply chain. Water. 2020;12:3006.
Bednar D.J., Reames T.G. Recognition of and response to energy poverty in the United States. Nature Energy. 2020;5:432–439.
IEA . IEA; Paris: 2021. Covid-19 impact on electricity.www.iea.org/reports/covid-19-impact-on-electricity
Werth A., Gravino P., Prevedello G. Impact analysis of COVID-19 responses on energy grid dynamics in Europe. Appl Energy. 2021;281:116045. PubMed PMC
Landrigan P.J., Bernstein A., Binagwaho A. COVID-19 and clean air: an opportunity for radical change. The Lancet Planetary Health. 2020;4:e447–e449. PubMed PMC
Hosseini S.E. An outlook on the global development of renewable and sustainable energy at the time of COVID-19. Energy Research & Social Science. 2020;68:101633. PubMed PMC
OECD . 2021. The long-term environmental implications of COVID-19, Tackling COVID-19: contributing to a global effort.https://www.oecd.org/coronavirus/policy-responses/the-long-term-environmental-implications-of-covid-19-4b7a9937/
Jiang P., Fan Y.V., Klemeš J.J. Impacts of COVID-19 on energy demand and consumption: challenges, lessons and emerging opportunities. Appl Energy. 2021;285:116441. PubMed PMC
Klemeš J.J., Fan Y.V., Jiang P. The energy and environmental footprints of COVID-19 fighting measures–PPE, disinfection, supply chains. Energy. 2020;211:118701. PubMed PMC
Klemeš J.J., Jiang P., Fan Y.V., Bokhari A., Wang X.C. COVID-19 pandemics Stage II–Energy and environmental impacts of vaccination. Renew Sustain Energy Rev. 2021;150:111400. PubMed PMC
Newman P. 2020. Conversation AU. theconversation.com/creative-destruction-the-covid-19-economic-crisis-is-accelerating-the-demise-of-fossil-fuels-143739.
Klemeš J.J., Fan Y.V., Jiang P. COVID-19 pandemic facilitating energy transition opportunities. Int J Energy Res. 2020;45:3457–3463. PubMed PMC
SEFA (Sustainable Energy For All) 2020. Changes in energy sector financing during COVID-19: lessons from the Ebola outbreak in Sierra Leone.www.seforall.org/system/files/2020-10/EF-Energy-Sector-Financing-Sierra-Leone.pdf
Kuzemko C., Bradshaw M., Bridge G., Goldthau A., Jewell J., Overland I., Westphal K. Covid-19 and the politics of sustainable energy transitions. Energy Research & Social Science. 2020;68:101685. PubMed PMC
Steffen B., Egli F., Pahle M., Schmidt T.S. Navigating the clean energy transition in the COVID-19 crisis. Joule. 2020;4:1137–1141. PubMed PMC
Hansen K., Breyer C., Lund H. Status and perspectives on 100% renewable energy systems. Energy. 2019;175:471–480.
Capros P., Zazias G., Evangelopoulou S., Kannavou M., Fotiou T., Siskos P., Sakellaris K. Energy-system modelling of the EU strategy towards climate-neutrality. Energy Pol. 2019;134:110960.
Wilson C., Pettifor H., Cassar E., Kerr L., Wilson M. The potential contribution of disruptive low-carbon innovations to 1.5 C climate mitigation. Energy Eff. 2019;12:423–440.
Shen G., Ru M., Du W., Zhu X., Zhong Q., Chen Y., Tao S. Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. Nat Commun. 2019;10:1–8. PubMed PMC
Walmsley T.G., Walmsley M.R., Varbanov P.S., Klemeš J.J. Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: a review. Renew Sustain Energy Rev. 2018;98:328–345.
Lazard . 2020. Levelized cost of energy, levelized cost of storage, and levelized cost of hydrogen.www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen/
de Chalendar J.A., Benson S.M. Why 100% renewable energy is not enough. Joule. 2019;3:1389–1393.
Luderer G., Pehl M., Arvesen A., Gibon T., Bodirsky B.L., de Boer H.S., Hertwich E.G. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat Commun. 2019;10:1–13. PubMed PMC
Hertwich E., de Larderel J.A., Arvesen A., Bayer P., Bergesen J., Bouman E., Gibon T., Heath G., Peña C., Purohit P., Ramirez A. United Nations Environment Programme; Paris, France: 2016. Green energy choices: the benefits, risks, and trade-offs of low-carbon technologies for electricity production.
Fan Y.V., Klemeš J.J., Wan Alwi S.R. The environmental footprint of renewable energy transition with increasing energy demand: eco-Cost. Chem Eng Tran. 2021;86:199–204.
Freeing Energy . 2021. How much land is required for various electricity generation methods?www.freeingenergy.com/math/land-use-compare-coal-nuclear-solar-wind-m129/
Ritchie H. 2020. What are the safest and cleanest sources of energy? Our World in Data. ourworldindata.org/safest-sources-of-energy.
Faircloth C.C., Wagner K.H., Woodward K.E., Rakkwamsuk P., Gheewala S.H. The environmental and economic impacts of photovoltaic waste management in Thailand. Resour Conserv Recycl. 2019;143:260–272.
Vargas C., Chesney M. End of life decommissioning and recycling of solar panels in the United States. A real options analysis. J Sustain Financ Invest. 2021;11:82–102.
Liu P., Barlow C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017;62:229–240. PubMed
Jensen J.P., Skelton K. Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy. Renew Sustain Energy Rev. 2018;97:165–176.
IRENA . 2020. Renewable power generation costs in 2020.www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020
Weißbach D., Ruprecht G., Huke A., Czerski K., Gottlieb S., Hussein A. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy. 2013;52:210–221.
Wealer B., Seidel J.P., von Hirschhausen C. The technological and economic future of nuclear power. Springer VS; Wiesbaden: 2019. Decommissioning of nuclear power plants and storage of nuclear waste; pp. 261–286.
Prado E.S., Miranda F.S., de Araujo L.G., Petraconi G., Baldan M.R. Thermal plasma technology for radioactive waste treatment: a review. J Radioanal Nucl Chem. 2020;325:331–342.
Natarajan V., Karunanidhi M., Raja B. A critical review on radioactive waste management through biological techniques. Environ Sci Pollut Control Ser. 2020;27:29812–29823. PubMed
Diesendorf M., Wiedmann T. Implications of trends in energy return on energy invested (EROI) for transitioning to renewable electricity. Ecol Econ. 2020;176:106726.
Williams J.H., Jones R.A., Haley B., Kwok G., Hargreaves J., Farbes J., Torn M.S. Carbon-neutral pathways for the United States. AGU Adv. 2021;2
Kitepower . 2021. Kitpower falcon: onshore containerised AWES-100.thekitepower.com/product/#operation
McManamay R.A., Vernon C.R., Jager H.I. Global biodiversity implications of alternative electrification strategies under the shared socioeconomic pathways. Biol Conserv. 2021;260:109234.
Lu Z., Zhang Q., Miller P.A., Zhang Q., Berntell E., Smith B. Impacts of large-scale Sahara solar farms on global climate and vegetation cover. Geophys Res Lett. 2021;48
Penaherrera F., Pehlken A. The material basis of energy transitions. Academic Press; 2020. Limits of life cycle assessment in the context of the energy transition and its material basis; pp. 121–140.
Delaney E.L., McKinley J.M., Megarry W., Graham C., Leahy P.G., Bank L.C., Gentry R. An integrated geospatial approach for repurposing wind turbine blades. Resour Conserv Recycl. 2021;170:105601.
Cooperman A., Eberle A., Lantz E. Wind turbine blade material in the United States: quantities, costs, and end-of-life options. Resour Conserv Recycl. 2021;168:105439.
Gentry T.R., Al-Haddad T., Bank L.C., Arias F.R., Nagle A., Leahy P. Structural analysis of a roof extracted from a wind turbine blade. J Architect Eng. 2020;26
Nižetić S. Smart energy technologies. Int J Energy Res. 2021;45:5.
Van Vuuren D.P., Stehfest E., Gernaat D.E., Van Den Berg M., Bijl D.L., De Boer H.S., van Sluisveld M.A. Alternative pathways to the 1.5 C target reduce the need for negative emission technologies. Nat Clim Change. 2018;8:391–397.
Shankman . IPCC says; 2018. Capturing CO2 from air: to keep global warming under 1.5 oC, emissions must go negative.insideclimatenews.org/news/12102018/global-warming-solutions-negative-emissions-carbon-capture-technology-ipcc-climate-change-report/
Godlewska P., Ok Y.S., Oleszczuk P. The dark side of black gold: ecotoxicological aspects of biochar and biochar-amended soils. J Hazard Mater. 2020;403:123833. PubMed
Čuček L., Klemeš J.J., Kravanja Z. A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod. 2012;34:9–20.
Smith P., Davis S.J., Creutzig F., Fuss S., Minx J., Gabrielle B., Yongsung C. Biophysical and economic limits to negative CO2 emissions. Nat Clim Change. 2016;6:42–50.
Minx J.C., Lamb W.F., Callaghan M.W., Fuss S., Hilaire J., Creutzig F., Dominguez M.D.M.Z. Negative emissions—Part 1: research landscape and synthesis. Environ Res Lett. 2018;13
Liu Y., Du J.L. A multi criteria decision support framework for renewable energy storage technology selection. J Clean Prod. 2020;277:122183.
Bianchi G., Panayiotou G.P., Aresti L., Kalogirou S.A., Florides G.A., Tsamos K., Christodoulides P. Estimating the waste heat recovery in the European Union Industry. Energy, Ecol Environ. 2019;4:211–221.
Kim S.H., Yoon S.J., Choi W. Design and construction of 1 MW class floating PV generation structural system using FRP members. Energies. 2017;10:1142.
Gaur P. Smart nanotechnology with applications. CRC Press; Florida, United States: 2020. Nanotechnology applications in the sectors of renewable energy sources; pp. 71–85.
Solé J., Samsó R., García-Ladona E., Garcia-Olivares A., Ballabrera-Poy J., Madurell T., Theofilidi M. Modelling the renewable transition: scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renew Sustain Energy Rev. 2020;132:110105.
Yalew S.G., van Vliet M.T., Gernaat D.E., Ludwig F., Miara A., Park C., Van Vuuren D.P. Impacts of climate change on energy systems in global and regional scenarios. Nature Energy. 2020;5:794–802.
Zailan R., Lim J.S., Manan Z.A., Alwi S.R.W. Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: a review. Renew Sustain Energy Rev. 2021;148:111289.
Ismail F.H., Shahrestani M., Vahdati M., Boyd P., Donyavi S. Climate change and the energy performance of buildings in the future – a case study for prefabricated buildings in the UK. J Build Eng. 2021;39:102285.
Han Z.J.G., Zhang H., Chen J., Huai X., Cui X. Experimental and numerical studies on novel airfoil fins heat exchanger in flue gas heat recovery system. Appl Therm Eng. 2021;192:116939.
Taler D., Taler J., Wrona K. New analytical-numerical method for modelling of tube cross-flow heat exchangers with complex flow systems. Energy. 2021;228:120633.
Wang B., Klemes J.J., Varbanov P.S., Zeng M., Liang Y. Heat Exchanger Network synthesis considering prohibited and restricted matches. Energy. 2021;225:120214.
Ibric N., Ahmetovic E., Kravanja Z., Grossmann I.E. Simultaneous optimisation of large-scale problems of heat-integrated water networks. Energy. 2021;235:121354.
Dere C., Deniz C. Effect analysis on energy efficiency enhancement of controlled cylinder liner temperatures in marine diesel engines with model based approach. Energy Convers Manag. 2020;220:113015.
Baratta M., Chiriches S., Goel P., Misul D. CFD modelling of natural gas combustion in IC engines under different EGR dilution and H2-doping conditions. Transport Eng. 2020;2:100018.
Silva J., Teixeira J., Teixeira S., Preziati S., Cassiano J. CFD modeling of combustion in biomass furnace. Energy Procedia. 2017;120:665–672.
Zhu J., Wang K., Jiang Z., Zhua B., Wu H. Modeling of heat transfer for energy efficiency prediction of solar receivers. Energy. 2020;190:116372.
Ghobakhloo M., Fathi M. Industry 4.0 and opportunities for energy sustainability. J Clean Prod. 2021;295:126427.
Bonilla-Camposa I., Nietoa N., Portillo-Valdesb Ld, Egilegora B., Manzanedoa J., Gaztañagaa H. Energy efficiency assessment: process modelling and waste heat recovery analysis. Energy Convers Manag. 2019;196:1180–1192.
Na H., Sun J., Qiu Z., He J., Yuan Y., Yan T., T. D A novel evaluation method for energy efficiency of process industry - a case study of typical iron and steel manufacturing process. Energy. 2021;233:121081.
Bermeo-Ayerbe M.A., Ocampto-Martinez C., Diaz-Rozo J. Adaptive predictive control for peripheral equipment management to enhance energy efficiency in smart manufacturing systems. J Clean Prod. 2021;291:125556.
Zhuang Y., Zhou C., Zhang L., Liu L., Du J., Shen S. A simultaneous optimization model for a heat-integrated syngas-to-methanol process with Kalina Cycle for waste heat recovery. Energy. 2021;227:120536.
Schimpe M., Naumann M., Truong N., Hesse H.C., Santhanagopalan S., Saxon A., Jossen A. Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis. Appl Energy. 2018;210:211–229.
Tapia J.F.D. Optimal synthesis of multi-product energy systems under neutrosophic environment. Energy. 2021;229:120745.
Sandvall A.F., Ahlgren E.O., Ekvall T. Cost-efficiency of urban heating strategies-Modelling scale effects of low-energy building heat supply. Energy Strategy Rev. 2017;18:212–223.
Fan Y., Xia X. A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance. Appl Energy. 2017;189:327–335.
Wu Z., Wang B., Xia X. Large-scale building energy efficiency retrofit: concept, model and control. Energy. 2016;109:456–465.
Lima Montenegro Duarte J.G.C., Zemero B.R., Souza A.C.D.B., Lima Tostes M.E., Bezerra U.H. Building Information Modeling approach to optimize energy efficiency in educational buildings. J. Build Eng. 2021;43:102587.
Sharma I., Dong J., Malikopoulos A.A., Street M., Ostrowski J., Kuruganti T., Jackson R. A modeling framework for optimal energy management ofa residential building. Energy Build. 2016;130:55–63.
Dadashi-Rad M.H., Ghasemi-Marzbali A., Ahangar R.A. Modeling and planning of smart buildings energy in power system considering demand response. Energy. 2020;213:118770.
Yang S., Wan M.P., Chen W., Ng B.F., Dubey S. Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization. Appl Energy. 2020;271:115147.
Belussi L., Barozzi B., Bellazzi A., Danza L., Devitofrancesco A.C.F., Ghellere M., Guazzi G., Meroni I., Salamone F., Scamoni F., Scrosati C. A review of performance of zero energy buildings and energy efficiency solutions. J Build Eng. 2019;25:100772.
Lund H., Arler F., Østergaard P.A., Hvelplund F., Connolly D., Mathiesen B.V., Karnøe P. Simulation versus optimisation: theoretical positions in energy system modelling. Energies. 2017;10:840.
Lund H., Østergaard P.A., Chang M., Werner S., Svendsen S., Sorknæs P., Thorsen J.E., Hvelplund F., Mortensen B.O.G., Mathiesen B.V., Bojesen C., Duic N., Zhang X., Möller B. The status of 4th generation district heating: research and results. Energy. 2018;164:147–159.
Lund H., Mathiesen B.V. Global smart energy systems redesign to meet the Paris Agreement. Smart Energy. 2021;1:100024.
Chang M., Thellufsen J.Z., Zakeri B., Pickering B., Pfenninger S., Lund H., Østergaard P.A. Trends in tools and approaches for modelling the energy transition. Appl Energy. 2021;290:116731.
Deane J.P., Drayton G., Gallachóir B.P.Ó. The impact of sub-hourly modelling in power systems with significant levels of renewable generation. Appl Energy. 2014;113:152–158.
Müller D., Knoll C., Gravogl G., Jordan C., Eitenberger E., Friedbacher G., Artner W., Welch J.M., Werner A., Harasek M., Miletich R., Weinberger P. Medium-temperature thermochemical energy storage with transition metal ammoniates – a systematic material comparison. Appl Energy. 2021;285:116470.
Kishore R.A., Priya S. A review on low-grade thermal energy harvesting: materials, methods and devices. Materials. 2018;11:1433. PubMed PMC
Kocak B., Fernandez A.I., Paksoy H. Benchmarking study of demolition wastes with different waste materials as sensible thermal energy storage. Sol Energy Mater Sol Cell. 2021;219:110777.
Zhang T., Lu G., Zhai X. Design and experimental investigation of a novel thermal energy storage unit with phase change material. Energy Rep. 2021;7:1818–1827.
Lang J., Matejova L., Cuentas-Gallegos A.K., Lobato-Peralta D.R., Ainassaari K., Gomez M.M., Solís J.L., Mondal D., Keiski R.L., Cruz G.J.F. Evaluation and selection of biochars and hydrochars derived from agricultural wastes for the use as adsorbent and energy storage materials. J Environ Chem Eng. 2021;9:105979.
Liu H., Wang W., Zhang Y. Performance gap between thermochemical energy storage systems based on salt hydrates and materials. J Clean Prod. 2021;313:127908.
Shi J., Qin M., Aftab W., Zou R. Flexible phase change materials for thermal energy storage. Energy Storage Mater. 2021;41:321–342.
Kou Y., Sun K., Luo J., Zhou F., Huang H., Wu Z.-S., Shi Q. An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 2021;34:508–514.
Zhou D., Zhao L., Li B. Recent progress in solution assembly of 2D materials for wearable energy storage applications. J Energy Chem. 2021;62:27–42.
Chuhadiya S., Suthar H.D., Patel S.L., Dhaka M.S. Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: a review. Coord Chem Rev. 2021;446:214115.
Salarizadeh P., Askari M.B. MoS2–ReS2/rGO: a novel ternary hybrid nanostructure as a pseudocapacitive energy storage material. J Alloys Compd. 2021;874:159886.
Jamil F., Ali H.M., Janjua M.M. MXene based advanced materials for thermal energy storage: a recent review. J Energy Storage. 2021;35:102322.
Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–4253. PubMed
Jun B.-M., Kim S., Heo J., Park C.M., Her N., Jang M., Huang Y., Han J. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019;12:471–487.
Ali A., Hantanasirisakul K., Abdala A., Urbankowski P., Zhao M.-Q., Anasori B., Gogotsi Y., Aïssa B., Mahmoud K.A. Effect of synthesis on performance of MXene/iron oxide anode material for lithium-ion batteries. Langmuir. 2018;34:11325–11334. PubMed
Ye M., Wang X., Liu E., Ye J., Wang D. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as co-catalyst. ChemSusChem. 2018;11 PubMed
Ran J., Gao G., Li F.-T., Ma T.-Y., Du A., Qiao S.-Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun. 2017;8:13907. PubMed PMC
Hidegh G., Csemany D., Vamos J., Kavas L., Jozsa V. Mixture Temperature-Controlled combustion of different biodiesels and conventional fuels. Energy. 2021;234:121219.
Józsa V., Hidegh G., Kun-Balog A., Ng J.-H., Chong C.T. Ultra-low emission combustion of diesel-coconut biodiesel fuels by a mixture temperature-controlled combustion mode. Energy Convers Manag. 2020;214:112908.
Chong C.T., Chiong M.-C., Ng J.-H., Tran M.-V., Valera-Medina A., Jozsa V., Tian B. Dual-fuel operation of biodiesel and natural gas in a model gas turbine combustor. Energy Fuels. 2020;34:3788–3796.
Seljak T., Buffi M., Valera-Medina A., Chong C.T., Chiaramonti D., Kastrasnik T. Bioliquids and their use in power generation – a technology review. Renew Sustain Energy Rev. 2020;129:109930.
Goh B.H.H., Chong C.T., Ge Y., Ong H.C., Ng J.-H., Tian B., Ashokkumar V., Lim S., Seljak T., Jozsa V. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Convers Manag. 2020;223:113296.
Valera-Medina A., Xiao H., Owen-Jones M., David W.I.F., Bowen P.J. Ammonia for powe. Prog Energy Combust Sci. 2018;69:63–102.
Fasihi M., Weiss R., Savolainen J., Breyer C. Global potential of green ammonia based on hybrid PV-wind power plants. Appl Energy. 2021;294:116170.
Chiong M.-C., Chong C.T., Ng J.-H., Mashruk S., Chong W.W.F., Samiran N.A., Mong G.R., Valera-Medina A. Advancements of combustion technologies in the ammonia-fuelled engines. Energy Convers Manag. 2021;244:114460.
Chiong M.-C., Kang H.-S., Shaharuddin N.M.R., Mat S., Quen L.K., Ten K.-H., Ong M.C. Challenges and opportunities of marine propulsion with alternative fuels. Renew Sustain Energy Rev. 2021;149:111397.
Why E.S.K., Ong H.C., Lee H.V., Gan Y.Y., Chen W.-H., Chong C.T. Renewable aviation fuel by advanced hydroprocessing of biomass: challenges and perspective. Energy Convers Manag. 2019;199:112015.
Chong C.T., Ng J.-H. Biojet fuel in aviation application: production, usage and impact. 2021. Biojet fuel production pathways; pp. 81–141.
Lim J.H.K., Gan Y.Y., Ong H.C., Lau B.F., Chen W.-H., Chong C.T., Ling T.C., Klemeš J.J. Utilization of microalgae for bio-jet fuel production in the aviation sector: challenges and perspective. Renew Sustain Energy Rev. 2021;149:111396.
National Development and Reform Commission . 2019. Guiding opinions on promoting the development of the bio-natural gas industry.https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/201912/t20191219_1213770.html Available from:
Guo X., Chen H., Zhu X., Xia A., Liao Q., Huang Y., Zhu X. Revealing the role of conductive materials on facilitating direct interspecies electron transfer in syntrophic methanogenesis: a thermodynamic analysis. Energy. 2021;229:120747.
Dhanya B.S., Mishra A., Chandel A.K., Verma M.L. Development of sustainable approaches for converting the organic waste to bioenergy. Sci Total Environ. 2020;723:138109. PubMed
Dharmaraj S., Ashokkumar V., Hariharan S., Manibharathi A., Show P.L., Chong C.T., Ngamcharussrivichai C. The COVID-19 pandemic face mask waste: a blooming threat to the marine environment. Chemosphere. 2021;272:129603. PubMed PMC
Su G., Ong H.C., Ibrahim S., Fattah I.M.R., Mofijur M., Chong C.T. Valorisation of medical waste through pyrolysis for a cleaner environment: progress and challenges. Environ Pollut. 2021;279:116934. PubMed PMC
Mong G.R., Chong W.W.F., Mohd Nor S.A., Ng J.-H., Chong C.T., Idris R., Too J., Chiong M.C., Abas M.A. Pyrolysis of waste activated sludge from food manufacturing industry: thermal degradation, kinetics and thermodynamics analysis. Energy. 2021;235:121264.
Chong C.T., Mong G.R., Ng J.-H., Chong W.W.F., Ani F.N., Lam S.S., Ong H.C. Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers Manag. 2019;180:1260–1267.
Mong G.R., Chong C.T., Ng J.-H., Chong W.W.F., Lam S.S., Ong H.C., Ani F.N. Microwave pyrolysis for valorisation of horse manure biowaste. Energy Convers Manag. 2020;220:113074.
Idris R., Chong W.W.F., Ali A., Idris S., Tan W.H., Salim R.M., Mong G.R., Chong C.T. Pyrolytic oil with aromatic-rich hydrocarbons via microwave-induced in-situ catalytic co-pyrolysis of empty fruit bunches with a waste truck tire. Energy Convers Manag. 2021;244:114502.
Lam S.S., Wan Mahari W.A., Ma N.L., Azwar E., Kwon E.E., Peng W., Chong C.T., Liu Z., Park Y.-K. Microwave pyrolysis valorization of used baby diaper. Chemosphere. 2019;230:294–302. PubMed
Sitek T., Pospíšil J., Poláčik J., Chýlek R. Thermogravimetric analysis of solid biomass fuels and corresponding emission of fine particles. Energy. 2021;237:121609.
Lund H., Østergaard P.A., Connolly D., Mathiesen B.V. Smart energy and smart energy systems. Energy. 2017;137:556–565.
Ahmad T., Zhang D. Using the internet of things in smart energy systems and networks. Sustain Cit Soc. 2021;68:102783.
Xu Y., Yan C., Liu H., Wang J., Yang Z., Jiang Y. Smart energy systems: a critical review on design and operation optimization. Sustain Cit Soc. 2020;62:102369.
Hvelplund F., Möller B., Sperling K. Local ownership, smart energy systems and better wind power economy. Energy Strategy Rev. 2013;1:164–170.
Hoang A.T., Pham V.V., Nguyen X.P. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J Clean Prod. 2021;305:127161.
Lund H., Thellufsen J.Z., Østergaard P.A., Sorknæs P., Skov I.R., Mathiesen B.V. EnergyPLAN-Advanced analysis of smart energy systems. Smart Energy. 2021;1:100007.
Mah A.X.Y., Ho W.S., Hassim M.H., Hashim H., Ling G.H.T., Ho C.S., Muis Z.A. Optimization of photovoltaic-based microgrid with hybrid energy storage: a P-graph approach. Energy. 2021;233:121088.
Alabi T.M., Lu L., Yang Z. Stochastic optimal planning scheme of a zero-carbon multi-energy system (ZC-MES) considering the uncertainties of individual energy demand and renewable resources: an integrated chance-constrained and decomposition algorithm (CC-DA) approach. Energy. 2021;232:121000.
Zeinalnezhad M., Chofreh A.G., Goni F.A., Hashemi L.S., Klemes J.J. A hybrid risk analysis model for wind farms using Coloured Petri Nets and interpretive structural modelling. Energy. 2021;229:120696.
Mohd Idris M.N., Hashim H., Leduc S., Yowargana P., Kraxner F., Woon K.S. Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty. Energy. 2021;232:120967.
Bacekovic I., Østergaard P.A. A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb. Energy. 2018;155:824–837.
Abu-Rayash Z., Dincer I. Development and analysis of an integrated solar energy system for smart cities. Sustain Energy Technol Asses. 2021;46:101170.
Ajanovic A., Hiesl A., Haas R. On the role of storage for electricity in smart energy systems. Energy. 2020;200:117473.
Scientific J. 2018. Available storage technologies.https://www.joiscientific.com/hydrogen-and-energy-storage-expanding-capacity/available-storage-technologies/ 2018.
Lund H., Østergaard P.A., Connolly D., Ridjan I., Mathiesen B.V., Hvelplund F., Thellufsen J.Z., Sorknæs P. Energy storage and smart energy systems. Int J Sustain Energy Plann Manag. 2016;11:3–14.
Wang J., Kang L., Huang X., Liu Y. An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers. Energy. 2021;226:120395.
Mah A.X.Y., Ho W.S., Hassim M.H., Hashim H., Ling G.H.T., Ho C.S., Muis Z.A. Optimization of a standalone photovoltaic-based microgrid with electricity and hydrogen loads. Energy. 2021;235:121218.
Kabalci Y., Kabalci E. Modeling and analysis of a smart grid monitoring system for renewable energy sources. Sol Energy. 2017;153:262–275.
Guo C., Luo F., Cai Z., Dong Z.Y., Zhang R. Integrated planning of internet data centers and battery energy storage systems in smart grids. Appl Energy. 2021;281:116093.
Lund H., Werner A., Wiltshire R., Svendsen S., Thorsen J.E., Hvelplund F., Mathiesen B.V. 4th Generation District Heating (4GDH): integrating smart thermal grids into future sustainable energy systems. Energy. 2014;2014:1–11.
Lund H. Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach. Energy. 2018;151:94–102.
Alam M.R., Reaz M.B.I., Ali M.A.M. A review of smart homes—past, present, and future. IEEE Trans Syst, Man, and Cybernetics, Part C (Appl Rev) 2012;42:1190–1203.
Lutolf R. Smart home concept and the integration of energy meters into a home based system. Proc. 7th Int. Conf Meter Apparatus Tariffs Electr. Supply. 1992:277–278.
Ford R., Pritoni M., Sanguinetti A., Karlin B. Categories and functionality of smart home technology for energy management. Build Environ. 2017;123:543–554.
Behzadi A., Arabkoohsar A. Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit. Energy. 2020;210:118528.
Celik B., Roche R., Suryanarayanan S., Bouquain D., Miraoui A. Electric energy management in residential areas through coordination of multiple smart homes. Renew Sustain Energy Rev. 2017;80:260–275.
Salerno I., Anjos M.F., Mckinnon K., Gomez-Herrera J.A. Adaptable energy management system for smart buildings. J Build Eng. 2021;44:102748.
Zheng Z., Sun Z., Pan J., Luo X. An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems. Appl Energy. 2021;298:117159.
Groppi D., Pfeifer A., Garcia D.A., Krajačić G., N. D A review on energy storage and demand side management solutions in smart energy islands. Renew Sustain Energy Rev. 2021;135:110183.
de São José D., Faria P., Vale Z. Smart energy community: a systematic review with metanalysis. Energy Strategy Rev. 2021;36:100678.
Yang L., Wang X.-C., Dai M., Chen B., Qiao Y., Deng H., Zhang D., Zhang Y., de Almeida C.M.V.B., Chiu A.S.F., Klemes J.J., Wang Y. Shifting from fossil-based economy to bio-based economy: status quo, challenges, and prospects. Energy. 2021;228:120533.
Un . 2020. UN sustainable development goals.https://sdgs.un.org/goals assesed: 7 Sep 2021
Elavarasan R.M., Pugazhendhi R., Jamal T., Dyduch J., Arif M.T., Kumar N.M., Shafiullah G.M., Chopra S.S., Nadarajah M. Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world. Appl Energy. 2021;292:116665.
Wang X.-C., Klemes J.J., Ouyang X., Xu Z., Fan W., Wei H., Song W. Regional embodied Water-Energy-Carbon efficiency of China. Energy. 2021;224:120159.
Wang J., Shahbaz M., Song M. Evaluating energy economic security and its influencing factors in China. Energy. 2021;229:120638.
Brodny J., Tutak M. Assessing sustainable energy development in the central and eastern European countries and analyzing its diversity. Sci Total Environ. 2021;801:149745. PubMed
Ali M.M.M., Yu Q. Assessment of the impact of renewable energy policy on sustainable energy for all in West Africa. Renew Energy. 2021;180:544–551.
Yürek Y.T., Bulut M., Özyörük B., Özcan E. Evaluation of the hybrid renewable energy sources using sustainability index under uncertainty. Sustain Energy, Grids and Netw. 2021;28:100527.
Chong C.T., Loe T.Y., Wong K.Y., Ashokkumar V., Lam S.S., Chong W.T., Borrion A., Tian B., Ng J.-H. Biodiesel sustainability: the global impact of potential biodiesel production on the energy–water–food (EWF) nexus. Environ Technol Innov. 2021;22:101408.
Fan Y.V., Romanenko S., Gai L., Kupressova E., Varbanov P.S., Klemeš J.J. Biomass integration for energy recovery and efficient use of resources: Tomsk Region. Energy. 2021;235:121378.
Cho H.H., Strezov V. Comparative analysis of the environmental impacts of Australian thermal power stations using direct emission data and GIS integrated methods. Energy. 2021;231:120898.
Woon K.S., Phuang Z.X., Lin Z., Lee C.T. A novel food waste management framework combining optical sorting system and anaerobic digestion: a case study in Malaysia. Energy. 2021;232:121094.
Gomez-Camacho C.E., Pirone R., Ruggeri B. Is the Anaerobic Digestion (AD) sustainable from the energy point of view? Energy Convers Manag. 2021;231:113857.
Shi X., Chu J., Zhao C. Exploring the spatiotemporal evolution of energy intensity in China by visual technology of the GIS. Energy. 2021;228:120650.
Phuang Z.X., Woon K.S., Wong K.J., Liew P.Y., Hanafiah M.M. Unlocking the environmental hotspots of palm biodiesel upstream production in Malaysia via life cycle assessment. Energy. 2021;232:121206.
Yun S., Hang M.-G., Kim J.-K. Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry. Energy. 2021;229:120778.