Analysis of BRCT5 domain-containing proteins reveals a new component of DNA damage repair in Arabidopsis

. 2022 ; 13 () : 1023358. [epub] 20221212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36578335

The integrity of plant genetic information is constantly challenged by various internal and external factors. Therefore, plants use a sophisticated molecular network to identify, signal and repair damaged DNA. Here, we report on the identification and analysis of four uncharacterized Arabidopsis BRCT5 DOMAIN CONTAINING PROTEINs (BCPs). Proteins with the BRCT5 domain are frequently involved in the maintenance of genome stability across eukaryotes. The screening for sensitivity to induced DNA damage identified BCP1 as the most interesting candidate. We show that BCP1 loss of function mutants are hypersensitive to various types of DNA damage and accumulate an increased number of dead cells in root apical meristems upon DNA damage. Analysis of publicly available sog1 transcriptomic and SOG1 genome-wide DNA binding data revealed that BCP1 is inducible by gamma radiation and is a direct target of this key DNA damage signaling transcription factor. Importantly, bcp1 plants showed a reduced frequency of somatic homologous recombination in response to both endogenous and induced DNA damage. Altogether, we identified a novel plant-specific DNA repair factor that acts downstream of SOG1 in homology-based repair.

Zobrazit více v PubMed

Alonso J. M., Stepanova A. N., Leisse T. J., Kim C. J., Chen H., Shinn P., et al. . (2003). Genome-wide insertional mutagenesis of arabidopsis thaliana. Science 301, 653–657. doi: 10.1126/science.1086391 PubMed DOI

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI

Baubec T., Pecinka A., Rozhon W., Mittelsten Scheid O. (2009). Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant J. 57, 542–554. doi: 10.1111/j.1365-313X.2008.03699.x PubMed DOI PMC

Bork P., Hofmann K., Bucher P., Neuwald A. F., Altschul S. F., Koonin E. V. (1997). A superfamily of conserved domains in DNA damage- responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76. doi: 10.1096/fasebj.11.1.9034168 PubMed DOI

Bourbousse C., Vegesna N., Law J. A. (2018). SOG1 activator and MYB3R repressors regulate a complex DNA damage network in arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115, E12453–E12462. doi: 10.1073/pnas.1810582115 PubMed DOI PMC

Chatterjee N., Walker G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263. doi: 10.1002/em.22087 PubMed DOI PMC

Hafner A., Bulyk M. L., Jambhekar A., Lahav G. (2019). The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199–210. doi: 10.1038/s41580-019-0110-x PubMed DOI

Han P., Li Q., Zhu Y.-X. (2008). Mutation of arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. Plant Cell 20, 1482–1493. doi: 10.1105/tpc.108.058867 PubMed DOI PMC

Heyer W.-D., Ehmsen K. T., Liu J. (2010). Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139. doi: 10.1146/annurev-genet-051710-150955 PubMed DOI PMC

Hu Z., Cools T., De Veylder L. (2016). Mechanisms used by plants to cope with DNA damage. Annu. Rev. Plant Biol. 67, 439–462. doi: 10.1146/annurev-arplant-043015-111902 PubMed DOI

Kleinboelting N., Huep G., Kloetgen A., Viehoever P., Weisshaar B. (2012). GABI-kat SimpleSearch: new features of the arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res. 40, D1211–D1215. doi: 10.1093/nar/gkr1047 PubMed DOI PMC

Klepikova A. V., Kasianov A. S., Gerasimov E. S., Logacheva M. D., Penin A. A. (2016). A high resolution map of the arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058–1070. doi: 10.1111/tpj.13312 PubMed DOI

Lafarge S., Montané M.-H. (2003). Characterization of arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1 , strongly induced by gamma rays. Nucleic Acids Res. 31, 1148–1155. doi: 10.1093/nar/gkg202 PubMed DOI PMC

Leung G. P., Lee L., Schmidt T. I., Shirahige K., Kobor M. S. (2011). Rtt107 is required for recruitment of the SMC5/6 complex to DNA double strand breaks. J. Biol. Chem. 286, 26250–26257. doi: 10.1074/jbc.M111.235200 PubMed DOI PMC

Li X., Liu K., Li F., Wang J., Huang H., Wu J., et al. . (2012). Structure of c-terminal tandem BRCT repeats of Rtt107 protein reveals critical role in interaction with phosphorylated histone H2A during DNA damage repair. J. Biol. Chem. 287, 9137–9146. doi: 10.1074/jbc.M111.311860 PubMed DOI PMC

Lobet G., Pagès L., Draye X. (2011). A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 157, 29–39. doi: 10.1104/pp.111.179895 PubMed DOI PMC

Manova V., Gruszka D. (2015). DNA Damage and repair in plants – from models to crops. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00885 PubMed DOI PMC

Mayer K. F. X., Schoof H., Haecker A., Lenhard M., Jürgens G., Laux T. (1998). Role of WUSCHEL in regulating stem cell fate in the arabidopsis shoot meristem. Cell 95, 805–815. doi: 10.1016/S0092-8674(00)81703-1 PubMed DOI

Menges M., Hennig L., Gruissem W., Murray J. A. H. (2002). Cell cycle-regulated gene expression inArabidopsis *. J. Biol. Chem. 277, 41987–42002. doi: 10.1074/jbc.M207570200 PubMed DOI

Molinier J., Ries G., Bonhoeffer S., Hohn B. (2004). Interchromatid and interhomolog recombination in arabidopsis thaliana. Plant Cell 16, 342–352. doi: 10.1105/tpc.019042 PubMed DOI PMC

Nisa M.-U., Huang Y., Benhamed M., Raynaud C. (2019). The plant DNA damage response: signaling pathways leading to growth inhibition and putative role in response to stress conditions. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00653 PubMed DOI PMC

Ogita N., Okushima Y., Tokizawa M., Yamamoto Y. Y., Tanaka M., Seki M., et al. . (2018). Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in arabidopsis. Plant J. 94, 439–453. doi: 10.1111/tpj.13866 PubMed DOI

Oravcová M., Gadaleta M. C., Nie M., Reubens M. C., Limbo O., Russell P., et al. . (2019)Brc1 promotes the focal accumulation and SUMO ligase activity of Smc5-Smc6 during replication stress. In: Molecular and cellular biology. Available at: https://journals.asm.org/doi/full/10.1128/MCB.00271-18 (Accessed May 11, 2022). PubMed PMC

Orel N., Kyryk A., Puchta H. (2003). Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 35, 604–612. doi: 10.1046/j.1365-313X.2003.01832.x PubMed DOI

Preuss S. B., Britt A. B. (2003). A DNA-damage-induced cell cycle checkpoint in arabidopsis. Genetics 164, 323–334. doi: 10.1093/genetics/164.1.323 PubMed DOI PMC

Prochazkova K., Finke A., Tomaštíková E. D., Filo J., Bente H., Dvořák P., et al. . (2022). Zebularine induces enzymatic DNA–protein crosslinks in 45S rDNA heterochromatin of arabidopsis nuclei. Nucleic Acids Res. 50, 244–258. doi: 10.1093/nar/gkab1218 PubMed DOI PMC

Puchta H., Swoboda P., Hohn B. (1995). Induction of intrachromosomal homologous recombination in whole plants. Plant J. 7, 203–210. doi: 10.1046/j.1365-313X.1995.7020203.x DOI

R Core Team . (2018). R: A Language and Environment for Statistical Computing (Vienna:R Foundation for Statistical Computing; ). Available at: https://www.R-project.org.

Räschle M., Smeenk G., Hansen R. K., Temu T., Oka Y., Hein M. Y., et al. . (2015). Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348, 1253671. doi: 10.1126/science.1253671 PubMed DOI PMC

Razqallah H. (2008). DNA-Damage repair; the good, the bad, and the ugly. EMBO J. 27, 589–605. doi: 10.1038/emboj.2008.15 PubMed DOI PMC

Reidt W., Wurz R., Wanieck K., Ha Chu H., Puchta H. (2006). A homologue of the breast cancer-associated gene BARD1 is involved in DNA repair in plants. EMBO J. 25, 4326–4337. doi: 10.1038/sj.emboj.7601313 PubMed DOI PMC

Seton-Rogers S. (2006). Putting p53 in context. Nat. Rev. Cancer 6, 423–423. doi: 10.1038/nrc1924 DOI

Shultz R. W., Tatineni V. M., Hanley-Bowdoin L., Thompson W. F. (2007). Genome-wide analysis of the core DNA replication machinery in the higher plants arabidopsis and rice. Plant Physiol. 144, 1697–1714. doi: 10.1104/pp.107.101105 PubMed DOI PMC

Swoboda P., Gal S., Hohn B., Puchta H. (1994). Intrachromosomal homologous recombination in whole plants. EMBO J. 13, 484–489. doi: 10.1002/j.1460-2075.1994.tb06283.x PubMed DOI PMC

Trapp O., Seeliger K., Puchta H. (2011). Homologs of breast cancer genes in plants. Front. Plant Sci. 2. doi: 10.3389/fpls.2011.00019 PubMed DOI PMC

Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., et al. . (2022). AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444. doi: 10.1093/nar/gkab1061 PubMed DOI PMC

Wan B., Hang L. E., Zhao X. (2016). Multi-BRCT scaffolds use distinct strategies to support genome maintenance. Cell Cycle 15, 2561–2570. doi: 10.1080/15384101.2016.1218102 PubMed DOI PMC

Williams J. S., Williams R. S., Dovey C. L., Guenther G., Tainer J. A., Russell P. (2010). gammaH2A binds Brc1 to maintain genome integrity during s-phase. EMBO J. 29, 1136–1148. doi: 10.1038/emboj.2009.413 PubMed DOI PMC

Wuest S. E., Vijverberg K., Schmidt A., Weiss M., Gheyselinck J., Lohr M., et al. . (2010). Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr. Biol. 20, 506–512. doi: 10.1016/j.cub.2010.01.051 PubMed DOI

Wu L. C., Wang Z. W., Tsan J. T., Spillman M. A., Phung A., Xu X. L., et al. . (1996). Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14, 430–440. doi: 10.1038/ng1296-430 PubMed DOI

Yan W., Shao Z., Li F., Niu L., Shi Y., Teng M., et al. . (2011). Structural basis of γH2AX recognition by human PTIP BRCT5-BRCT6 domains in the DNA damage response pathway. FEBS Lett. 585, 3874–3879. doi: 10.1016/j.febslet.2011.10.045 PubMed DOI

Yan S., Wang W., Marqués J., Mohan R., Saleh A., Durrant W. E., et al. . (2013). Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 52, 602–610. doi: 10.1016/j.molcel.2013.09.019 PubMed DOI PMC

Yoshiyama K. O. (2016). SOG1: a master regulator of the DNA damage response in plants. Genes Genet. Syst. 90, 209–216. doi: 10.1266/ggs.15-00011 PubMed DOI

Yoshiyama K., Conklin P. A., Huefner N. D., Britt A. B. (2009). Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc. Natl. Acad. Sci. 106, 12843–12848. doi: 10.1073/pnas.0810304106 PubMed DOI PMC

Yoshiyama K., Kobayashi J., Nobuo O., Minako U., Kimura S., Maki H., et al. . (2013. a). ATM-Mediated phosphorylation of SOG1 is essential for the DNA damage response in arabidopsis. EMBO Rep. 14, 817–822. doi: 10.1038/embor.2013.112 PubMed DOI PMC

Yoshiyama K. O., Sakaguchi K., Kimura S. (2013. b). DNA Damage response in plants: conserved and variable response compared to animals. Biology 2, 1338–1356. doi: 10.3390/biology2041338 PubMed DOI PMC

Yu X., Chini C. C. S., He M., Mer G., Chen J. (2003). The BRCT domain is a phospho-protein binding domain. Science 302, 639–642. doi: 10.1126/science.1088753 PubMed DOI

Zhang X., Henriques R., Lin S.-S., Niu Q.-W., Chua N.-H. (2006). Agrobacterium-mediated transformation of arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646. doi: 10.1038/nprot.2006.97 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...