Analysis of BRCT5 domain-containing proteins reveals a new component of DNA damage repair in Arabidopsis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36578335
PubMed Central
PMC9791218
DOI
10.3389/fpls.2022.1023358
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, BRCT domain, BRCT5 domain, DNA damage repair, genome stability, homologous recombination,
- Publikační typ
- časopisecké články MeSH
The integrity of plant genetic information is constantly challenged by various internal and external factors. Therefore, plants use a sophisticated molecular network to identify, signal and repair damaged DNA. Here, we report on the identification and analysis of four uncharacterized Arabidopsis BRCT5 DOMAIN CONTAINING PROTEINs (BCPs). Proteins with the BRCT5 domain are frequently involved in the maintenance of genome stability across eukaryotes. The screening for sensitivity to induced DNA damage identified BCP1 as the most interesting candidate. We show that BCP1 loss of function mutants are hypersensitive to various types of DNA damage and accumulate an increased number of dead cells in root apical meristems upon DNA damage. Analysis of publicly available sog1 transcriptomic and SOG1 genome-wide DNA binding data revealed that BCP1 is inducible by gamma radiation and is a direct target of this key DNA damage signaling transcription factor. Importantly, bcp1 plants showed a reduced frequency of somatic homologous recombination in response to both endogenous and induced DNA damage. Altogether, we identified a novel plant-specific DNA repair factor that acts downstream of SOG1 in homology-based repair.
Department of Cell Biology and Genetics Faculty of Science Palacký University Olomouc Czechia
Institute of Experimental Botany Olomouc Czechia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Alonso J. M., Stepanova A. N., Leisse T. J., Kim C. J., Chen H., Shinn P., et al. . (2003). Genome-wide insertional mutagenesis of arabidopsis thaliana. Science 301, 653–657. doi: 10.1126/science.1086391 PubMed DOI
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI
Baubec T., Pecinka A., Rozhon W., Mittelsten Scheid O. (2009). Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant J. 57, 542–554. doi: 10.1111/j.1365-313X.2008.03699.x PubMed DOI PMC
Bork P., Hofmann K., Bucher P., Neuwald A. F., Altschul S. F., Koonin E. V. (1997). A superfamily of conserved domains in DNA damage- responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76. doi: 10.1096/fasebj.11.1.9034168 PubMed DOI
Bourbousse C., Vegesna N., Law J. A. (2018). SOG1 activator and MYB3R repressors regulate a complex DNA damage network in arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115, E12453–E12462. doi: 10.1073/pnas.1810582115 PubMed DOI PMC
Chatterjee N., Walker G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263. doi: 10.1002/em.22087 PubMed DOI PMC
Hafner A., Bulyk M. L., Jambhekar A., Lahav G. (2019). The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199–210. doi: 10.1038/s41580-019-0110-x PubMed DOI
Han P., Li Q., Zhu Y.-X. (2008). Mutation of arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. Plant Cell 20, 1482–1493. doi: 10.1105/tpc.108.058867 PubMed DOI PMC
Heyer W.-D., Ehmsen K. T., Liu J. (2010). Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139. doi: 10.1146/annurev-genet-051710-150955 PubMed DOI PMC
Hu Z., Cools T., De Veylder L. (2016). Mechanisms used by plants to cope with DNA damage. Annu. Rev. Plant Biol. 67, 439–462. doi: 10.1146/annurev-arplant-043015-111902 PubMed DOI
Kleinboelting N., Huep G., Kloetgen A., Viehoever P., Weisshaar B. (2012). GABI-kat SimpleSearch: new features of the arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res. 40, D1211–D1215. doi: 10.1093/nar/gkr1047 PubMed DOI PMC
Klepikova A. V., Kasianov A. S., Gerasimov E. S., Logacheva M. D., Penin A. A. (2016). A high resolution map of the arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058–1070. doi: 10.1111/tpj.13312 PubMed DOI
Lafarge S., Montané M.-H. (2003). Characterization of arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1 , strongly induced by gamma rays. Nucleic Acids Res. 31, 1148–1155. doi: 10.1093/nar/gkg202 PubMed DOI PMC
Leung G. P., Lee L., Schmidt T. I., Shirahige K., Kobor M. S. (2011). Rtt107 is required for recruitment of the SMC5/6 complex to DNA double strand breaks. J. Biol. Chem. 286, 26250–26257. doi: 10.1074/jbc.M111.235200 PubMed DOI PMC
Li X., Liu K., Li F., Wang J., Huang H., Wu J., et al. . (2012). Structure of c-terminal tandem BRCT repeats of Rtt107 protein reveals critical role in interaction with phosphorylated histone H2A during DNA damage repair. J. Biol. Chem. 287, 9137–9146. doi: 10.1074/jbc.M111.311860 PubMed DOI PMC
Lobet G., Pagès L., Draye X. (2011). A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 157, 29–39. doi: 10.1104/pp.111.179895 PubMed DOI PMC
Manova V., Gruszka D. (2015). DNA Damage and repair in plants – from models to crops. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00885 PubMed DOI PMC
Mayer K. F. X., Schoof H., Haecker A., Lenhard M., Jürgens G., Laux T. (1998). Role of WUSCHEL in regulating stem cell fate in the arabidopsis shoot meristem. Cell 95, 805–815. doi: 10.1016/S0092-8674(00)81703-1 PubMed DOI
Menges M., Hennig L., Gruissem W., Murray J. A. H. (2002). Cell cycle-regulated gene expression inArabidopsis *. J. Biol. Chem. 277, 41987–42002. doi: 10.1074/jbc.M207570200 PubMed DOI
Molinier J., Ries G., Bonhoeffer S., Hohn B. (2004). Interchromatid and interhomolog recombination in arabidopsis thaliana. Plant Cell 16, 342–352. doi: 10.1105/tpc.019042 PubMed DOI PMC
Nisa M.-U., Huang Y., Benhamed M., Raynaud C. (2019). The plant DNA damage response: signaling pathways leading to growth inhibition and putative role in response to stress conditions. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00653 PubMed DOI PMC
Ogita N., Okushima Y., Tokizawa M., Yamamoto Y. Y., Tanaka M., Seki M., et al. . (2018). Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in arabidopsis. Plant J. 94, 439–453. doi: 10.1111/tpj.13866 PubMed DOI
Oravcová M., Gadaleta M. C., Nie M., Reubens M. C., Limbo O., Russell P., et al. . (2019)Brc1 promotes the focal accumulation and SUMO ligase activity of Smc5-Smc6 during replication stress. In: Molecular and cellular biology. Available at: https://journals.asm.org/doi/full/10.1128/MCB.00271-18 (Accessed May 11, 2022). PubMed PMC
Orel N., Kyryk A., Puchta H. (2003). Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 35, 604–612. doi: 10.1046/j.1365-313X.2003.01832.x PubMed DOI
Preuss S. B., Britt A. B. (2003). A DNA-damage-induced cell cycle checkpoint in arabidopsis. Genetics 164, 323–334. doi: 10.1093/genetics/164.1.323 PubMed DOI PMC
Prochazkova K., Finke A., Tomaštíková E. D., Filo J., Bente H., Dvořák P., et al. . (2022). Zebularine induces enzymatic DNA–protein crosslinks in 45S rDNA heterochromatin of arabidopsis nuclei. Nucleic Acids Res. 50, 244–258. doi: 10.1093/nar/gkab1218 PubMed DOI PMC
Puchta H., Swoboda P., Hohn B. (1995). Induction of intrachromosomal homologous recombination in whole plants. Plant J. 7, 203–210. doi: 10.1046/j.1365-313X.1995.7020203.x DOI
R Core Team . (2018). R: A Language and Environment for Statistical Computing (Vienna:R Foundation for Statistical Computing; ). Available at: https://www.R-project.org.
Räschle M., Smeenk G., Hansen R. K., Temu T., Oka Y., Hein M. Y., et al. . (2015). Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348, 1253671. doi: 10.1126/science.1253671 PubMed DOI PMC
Razqallah H. (2008). DNA-Damage repair; the good, the bad, and the ugly. EMBO J. 27, 589–605. doi: 10.1038/emboj.2008.15 PubMed DOI PMC
Reidt W., Wurz R., Wanieck K., Ha Chu H., Puchta H. (2006). A homologue of the breast cancer-associated gene BARD1 is involved in DNA repair in plants. EMBO J. 25, 4326–4337. doi: 10.1038/sj.emboj.7601313 PubMed DOI PMC
Seton-Rogers S. (2006). Putting p53 in context. Nat. Rev. Cancer 6, 423–423. doi: 10.1038/nrc1924 DOI
Shultz R. W., Tatineni V. M., Hanley-Bowdoin L., Thompson W. F. (2007). Genome-wide analysis of the core DNA replication machinery in the higher plants arabidopsis and rice. Plant Physiol. 144, 1697–1714. doi: 10.1104/pp.107.101105 PubMed DOI PMC
Swoboda P., Gal S., Hohn B., Puchta H. (1994). Intrachromosomal homologous recombination in whole plants. EMBO J. 13, 484–489. doi: 10.1002/j.1460-2075.1994.tb06283.x PubMed DOI PMC
Trapp O., Seeliger K., Puchta H. (2011). Homologs of breast cancer genes in plants. Front. Plant Sci. 2. doi: 10.3389/fpls.2011.00019 PubMed DOI PMC
Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., et al. . (2022). AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444. doi: 10.1093/nar/gkab1061 PubMed DOI PMC
Wan B., Hang L. E., Zhao X. (2016). Multi-BRCT scaffolds use distinct strategies to support genome maintenance. Cell Cycle 15, 2561–2570. doi: 10.1080/15384101.2016.1218102 PubMed DOI PMC
Williams J. S., Williams R. S., Dovey C. L., Guenther G., Tainer J. A., Russell P. (2010). gammaH2A binds Brc1 to maintain genome integrity during s-phase. EMBO J. 29, 1136–1148. doi: 10.1038/emboj.2009.413 PubMed DOI PMC
Wuest S. E., Vijverberg K., Schmidt A., Weiss M., Gheyselinck J., Lohr M., et al. . (2010). Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr. Biol. 20, 506–512. doi: 10.1016/j.cub.2010.01.051 PubMed DOI
Wu L. C., Wang Z. W., Tsan J. T., Spillman M. A., Phung A., Xu X. L., et al. . (1996). Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14, 430–440. doi: 10.1038/ng1296-430 PubMed DOI
Yan W., Shao Z., Li F., Niu L., Shi Y., Teng M., et al. . (2011). Structural basis of γH2AX recognition by human PTIP BRCT5-BRCT6 domains in the DNA damage response pathway. FEBS Lett. 585, 3874–3879. doi: 10.1016/j.febslet.2011.10.045 PubMed DOI
Yan S., Wang W., Marqués J., Mohan R., Saleh A., Durrant W. E., et al. . (2013). Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 52, 602–610. doi: 10.1016/j.molcel.2013.09.019 PubMed DOI PMC
Yoshiyama K. O. (2016). SOG1: a master regulator of the DNA damage response in plants. Genes Genet. Syst. 90, 209–216. doi: 10.1266/ggs.15-00011 PubMed DOI
Yoshiyama K., Conklin P. A., Huefner N. D., Britt A. B. (2009). Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc. Natl. Acad. Sci. 106, 12843–12848. doi: 10.1073/pnas.0810304106 PubMed DOI PMC
Yoshiyama K., Kobayashi J., Nobuo O., Minako U., Kimura S., Maki H., et al. . (2013. a). ATM-Mediated phosphorylation of SOG1 is essential for the DNA damage response in arabidopsis. EMBO Rep. 14, 817–822. doi: 10.1038/embor.2013.112 PubMed DOI PMC
Yoshiyama K. O., Sakaguchi K., Kimura S. (2013. b). DNA Damage response in plants: conserved and variable response compared to animals. Biology 2, 1338–1356. doi: 10.3390/biology2041338 PubMed DOI PMC
Yu X., Chini C. C. S., He M., Mer G., Chen J. (2003). The BRCT domain is a phospho-protein binding domain. Science 302, 639–642. doi: 10.1126/science.1088753 PubMed DOI
Zhang X., Henriques R., Lin S.-S., Niu Q.-W., Chua N.-H. (2006). Agrobacterium-mediated transformation of arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646. doi: 10.1038/nprot.2006.97 PubMed DOI