• This record comes from PubMed

House mouse subspecies do differ in their social structure

. 2022 Dec ; 12 (12) : e9683. [epub] 20221228

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

It is widely acknowledged that population structure can have a substantial impact on evolutionary trajectories. In social animals, this structure is strongly influenced by relationships among the population members, so studies of differences in social structure between diverging populations or nascent species are of prime interest. Ideal models for such a study are two house mouse subspecies, Mus musculus musculus and M. m. domesticus, meeting in Europe along a secondary contact zone. Though the latter subspecies has usually been supposed to form tighter and more isolated social units than the former, the evidence is still inconclusive. Here, we carried out a series of radiofrequency identification experiments in semi-natural enclosures to gather large longitudinal data sets on individual mouse movements. The data were summarized in the form of uni- and multi-layer social networks. Within them, we could delimit and describe the social units ("modules"). While the number of estimated units was similar in both subspecies, domesticus revealed a more "modular" structure. This subspecies also showed more intramodular social interactions, higher spatial module separation, higher intramodular persistence of parent-offspring contacts, and lower multiple paternity, suggesting more effective control of dominant males over reproduction. We also demonstrate that long-lasting modules can be identified with basic reproductive units or demes. We thus provide the first robust evidence that the two subspecies differ in their social structure and dynamics of the structure formation.

See more in PubMed

Adler, D. , & Kelly, S. T. (2018). Vioplot: Violin plot. R package version 0.3.2. https://github.com/TomKellyGenetics/vioplot

Anderson, P. K. (1964). Lethal alleles in Mus musculus: Local distribution and evidence for isolation of demes. Science, 145, 177–178. PubMed

Aslak, U. , Rosvall, M. , & Lehmann, S. (2018). Constrained information flows in temporal networks reveal intermittent communities. Physical Review E, 97, 062312. 10.1103/PhysRevE.97.062312 PubMed DOI

Bímová, B. , Karn, R. C. , & Piálek, J. (2005). The role of salivary androgen‐binding protein in reproductive isolation between two subspecies of house mouse: Mus musculus musculus and Mus musculus domesticus . Biological Journal of the Linnean Society, 84, 349–361. 10.1111/j.1095-8312.2005.00439.x DOI

Barnett, S. A. (1988). Exploring, sampling, neophobia, and feeding. In Prakash I. (Ed.), Rodent pest management (pp. 295–320). CRC Press.

Bates, D. , & Maechler, M. (2019). Matrix: Sparse and dense matrix classes and Methods. R package version 1.2‐18. https://CRAN.R‐project.org/package=Matrix

Berry, R. J. (1970). The natural history of the house mouse. Field Studies, 3, 219–262.

Berry, R. J. (1981). Population dynamics of the house mouse. In Berry R. J. (Ed.), Biology of the house mouse (Vol. 47, pp. 395–425. Symposia of the Zoological Society of London). Academic Press, Ltd.

Blondel, V. D. , Guillaume, J.‐L. , Lambiotte, R. , & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008. 10.1088/1742-5468/2008/10/P10008 DOI

Boursot, P. , Auffray, J.‐C. , Britton‐Davidian, J. , & Bonhomme, F. (1993). The evolution of house mice. Annual Review of Ecology and Systematics, 24, 119–152. 10.1146/annurev.es.24.110193.001003 DOI

Britton‐Davidian, J. , Catalan, J. , Lopez, J. , Ganem, G. , Nunes, A. C. , Ramalhinho, M. G. , Auffray, J.‐C. , Searle, J. B. , & Mathias, M. L. (2007). Patterns of genic diversity and structure in a species undergoing rapid chromosomal radiation: An allozyme analysis of house mice from the Madeira archipelago. Heredity, 99, 432–442. 10.1038/sj.hdy.6801021 PubMed DOI

Bush, G. L. (1975). Modes of animal speciation. Annual Review of Ecology and Systematics, 6, 339–364.

Butler, R. G. (1980). Population size, social behaviour, and dispersal in house mice: A quantitative investigation. Animal Behaviour, 28, 78–85.

Cassaing, J. , & Croset, H. (1985). Spatial organisation, competition and dynamics of wild mice populations (Mus spretus Lataste and Mus domesticus Rutty) in southern France. Zeitschrift für Säugetierkunde, 50, 271–284.

Chitty, D. (1954). Control of rats and mice. Clarendon Press.

Clutton‐Brock, T. (2017). Reproductive competition and sexual selection. Philosophical Transactions of the Royal Society B, 372, 20160310. 10.1098/rstb.2016.0310 PubMed DOI PMC

Clutton‐Brock, T. H. , & Lukas, D. (2012). The evolution of social philopatry and dispersal in female mammals. Molecular Ecology, 21, 472–492. 10.1111/j.1365-294X.2011.05232.x PubMed DOI

Coyne, J. A. , & Orr, H. A. (2004). Speciation. Sinauer Associates.

Crowcroft, P. (1955). Territoriality in wild house mice, Mus musculus L. Journal of Mammalogy, 36, 299–301.

Crowcroft, P. , & Rowe, F. P. (1963). Social organisation and territorial behaviour in the wild house mouse (Mus musculus L.). Proceedings of the Zoological Society of London, 140, 517–531.

Csardi, G. , & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695, 1–9.

Dallas, J. F. , Bonhomme, F. , Boursot, P. , Brittton‐Davidian, J. , & Bauchau, V. (1998). Population genetic structure in a Robertsonian race of house mice: Evidence from microsatellite polymorphism. Heredity, 80, 70–77. 10.1046/j.1365-2540.1998.00258.x PubMed DOI

Daniszová, K. , Mikula, O. , Macholán, M. , Pospíšilová, I. , Vošlajerová Bímová, B. , & Hiadlovská, Z. (2017). Subspecies‐specific response to ACTH challenge test in the house mouse (Mus musculus). General and Comparative Endocrinology, 252, 186–192. 10.1016/j.ygcen.2017.06.023 PubMed DOI

Davies, N. B. (1992). Dunnock behaviour and social evolution. Oxford University Press.

Dean, M. , Ardlie, G. , & Nachman, M. (2006). The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Molecular Ecology, 15, 4141–4151. 10.1111/j.1365-294X.2006.03068.x PubMed DOI PMC

Dewsbury, D. A. (1990). Individual attributes generate contrasting degrees of sociality in voles. In Tamarin R. H., Ostfeld R. S., Pugh S. R., & Bujalska G. (Eds.), Social systems and population cycles in voles. Advances in life sciences (pp. 1–9). Birkhäuser.

Drobniak, S. M. , Wagner, G. , Mourocq, E. , & Griesser, M. (2015). Family living: An overlooked but pivotal social system to understand the evolution of cooperative breeding. Behavioral Ecology, 26, 805–811. 10.1093/beheco/arv015 DOI

Ďureje, Ľ. , Vošlajerová Bímová, B. , & Piálek, J. (2011). No postnatal maternal effect on male aggressiveness in wild‐derived strains of house mice. Aggressive Behavior, 35, 48–55. 10.1002/ab.20371 PubMed DOI

Evans, J. , Liechti, J. I. , Silk, M. J. , Bonhoffer, S. , & König, B. (2021). Quantifying the influence of space on social group structure. bioRxiv. 10.1101/2020.12.10.419317 DOI

Evans, J. C. , Lindholm, A. K. , & König, B. (2021). Long‐term overlap of social and genetic structure in free‐ranging house mice reveals dynamic seasonal and group size effects. Current Zoology, 67, 59–69. 10.1093/cz/zoaa030 PubMed DOI PMC

Evans, J. , Lindholm, A. , & König, B. (2022). Family dynamics reveal that female house mice preferentially breed in their maternal community. Behavioral Ecology, 33, 222–223. 10.1093/beheco/arab128 DOI

Ferrari, M. , Lindholm, A. K. , & König, B. (2019). Fitness consequences of female alternative reproductive tactics in house mice (Mus musculus domesticus). The American Naturalist, 193, 106–124. PubMed

Finn, K. R. , Silk, M. J. , Porter, M. A. , & Pinter‐Wollman, N. (2019). The use of multi‐layer network analysis in animal behaviour. Animal Behaviour, 149, 7–22. 10.1016/j.anbehav.2018.12.016 PubMed DOI PMC

Firman, R. C. , & Simmons, L. W. (2008). The frequency of multiple paternity predicts variation in testes size among Island populations of house mice. Journal of Evolutionary Biology, 21, 1524–1533. 10.1111/j.1420-9101.2008.01612.x PubMed DOI

Fortunato, S. , & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America, 104, 36–41. 10.1073/pnas.0605965104 PubMed DOI PMC

Ganem, G. (2012). Behaviour, ecology and speciation in the house mouse. In Macholán M., Baird S. J. E., Munclinger P., & Piálek J. (Eds.), Evolution of the house mouse (pp. 373–406). Cambridge University Press.

Geraldes, A. , Basset, P. , Gibson, B. , Smith, K. L. , Harr, B. , Yu, H. T. , Bulatova, N. , Ziv, Y. , & Nachman, M. W. (2008). Inferring the history of speciation in house mice from autosomal, X‐linked, Y‐linked and mitochondrial genes. Molecular Ecology, 17, 5349–5363. 10.1111/j.1365-294X.2008.04005.x PubMed DOI PMC

Hardouin, E. A. , Chapuis, J.‐L. , Stevens, M. I. , van Vuuren, J. B. , Quillfeldt, P. , Scavetta, R. J. , Teschke, M. , & Tautz, D. (2010). House mouse colonisation patterns on the sub‐Antarctic Kerguelen archipelago suggest singular primary invasions and resilience against re‐invasion. BMC Evolutionary Biology, 10, 325. PubMed PMC

Hiadlovská, Z. , Hamplová, P. , Berchová Bímová, K. , Macholán, M. , & Vošlajerová Bímová, B. (2021). Ontogeny of social hierarchy in two European house mouse subspecies and difference in the social rank of dispersing males. Behavioural Processes, 183(104), 316. 10.1016/j.beproc.2021.104316 PubMed DOI

Hiadlovská, Z. , Macholán, M. , Mikula, O. , & Vošlajerová Bímová, B. (2014). The meek inherit the earth: Less aggressive wild mice are more successful in challenging situations. Biological Journal of the Linnean Society, 113, 310–319. 10.1111/bij.12307 DOI

Hiadlovská, Z. , Mikula, O. , Macholán, M. , Hamplová, P. , Vošlajerová Bímová, B. , & Daniszová, K. (2015). Shaking the myth: Body mass, aggression, steroid hormones, and social dominance in wild house mouse. General and Comparative Endocrinology, 223, 16–26. 10.1016/j.ygcen.2015.09.033 PubMed DOI

Hiadlovská, Z. , Vošlajerová Bímová, B. , Mikula, O. , Piálek, J. , & Macholán, M. (2013). Transgressive segregation in a behavioural trait? Explorative strategies in two house mouse subspecies and their hybrids. Biological Journal of the Linnean Society, 108, 225–235. 10.1111/j.1095-8312.2012.01997.x DOI

Holme, P. (2015). Modern temporal network theory: A colloquium. European Physical Journal B, 88, 234. 10.1140/epjb/e2015-60657-4 DOI

Jarne, P. , & Städler, T. (1995). Population genetic structure and mating system evolution in freshwater pulmonates. Experientia, 51, 482–497. 10.1007/BF02143200 DOI

König, B. (1994). Fitness effects of communal rearing in house mice: The role of relatedness versus familiarity. Animal Behaviour, 6, 1449–1457. 10.1006/anbe.1994.1381 DOI

König, B. , Lindholm, A. K. , Lopes, P. C. , Dobay, A. , Steinert, S. , & Buschmann, F. J. U. (2015). A system for automatic recording of social behavior in a free‐living wild house mouse population. Animal Biotelemetry, 3, 39. 10.1186/s40317-015-0069-0 DOI

Kalinowski, S. T. , Taper, M. L. , & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099–1106. 10.1111/j.1365-294X.2007.03089.x PubMed DOI

Kappeler, P. M. (2019). A framework for studying social complexity. Behavioral Ecology and Sociobiology, 73, 13. 10.1007/s00265-018-2601-8 DOI

Kappeler, P. M. , & van Schaik, C. P. (2002). Evolution of primate social systems. International Journal of Primatology, 23, 707–740. 10.1023/A:1015520830318 DOI

Kawamoto, T. , & Rosvall, M. (2015). Estimating the resolution limit of the map equation in community detection. Physical Review E, 91, 012809. 10.1103/PhysRevE.91.012809 PubMed DOI

Kemppainen, P. , Li, Z. , Rastas, P. , Löytynoja, A. , Fang, B. , Yang, J. , Guo, B. , Shikano, T. , & Merilä, J. (2021). Genetic population structure constrains local adaptation in sticklebacks. Molecular Ecology, 30, 1946–1961. 10.1111/mec.15808 PubMed DOI

Kramer, J. , & Meunier, J. (2019). The other facets of family life and their role in the evolution of animal sociality. Biological Reviews, 94, 199–215. 10.1111/brv.12443 PubMed DOI

Krasnov, B. R. (1988). Ecology of Mus musculus (Rodentia, Muridae) in the north‐east of the USSR. Zoologicheskii Zhurnal, 67, 102–110 [In Russian with English summary].

Krasnov, B. R. , & Khokhlova, I. S. (1994). Spatial‐behavioural structure of subpopulations. In Kotenkova E. V. & Bulatova N. S. (Eds.), The house mouse. Origin, distribution, systematics, behaviour (pp. 188–214). Nauka.

Kronenberger, J.‐P. , & Medioni, J. (1985). Food neophobia in wild and laboratory mice Mus musculus domesticus . Behavioural Processes, 11, 53–60. PubMed

Kryvokhyzha, D. , Holm, K. , Chen, J. , Cornille, A. , Glémin, S. , Wright, S. I. , Lagercrantz, U. , & Lascoux, M. (2016). The influence of population structure on gene expression and flowering time variation in the ubiquitous weed Capsella bursa‐pastoris (Brassicaceae). Molecular Ecology, 25, 1106–1121. 10.1111/mec.13537 PubMed DOI

Lewontin, R. C. , & Dunn, L. C. (1960). The evolutionary dynamics of a polymorphism in the house mouse. Genetics, 45, 705–722. PubMed PMC

Lidicker, W. Z., Jr. (1976). Social behaviour and density regulation in house mice living in large enclosures. Journal of Animal Ecology, 45, 677–697.

Liechti, J. I. , & Bonhoeffer, S. (2019). A time resolved clustering method revealing longterm structures and their short‐term internal dynamics. arXiv pre‐print arXiv:191204261.

Lopes, C. , Block, P. , & König, B. (2016). Infection‐induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Scientific Reports, 6(31), 790. 10.1038/srep31790 PubMed DOI PMC

Macholán, M. , Mrkvicová Vyskočilová, M. , Bejček, V. , & Šťastný, K. (2012). Mitochondrial DNA sequence variation and evolution of Old World house mice (Mus musculus). Folia Zoologica, 61, 284–307. 10.25225/fozo.v61.i3.a12.2012 DOI

Mucha, P. J. , Richardson, T. , Macon, K. , Porter, M. A. , & Onnela, J.‐P. (2010). Community structure in time‐dependent, multiscale, and multiplex networks. Science, 328, 876–878. 10.1126/science.1184819 PubMed DOI

Nachman, M. W. , & Searle, J. B. (1995). Why is the house mouse karyotype so variable? Trends in Ecology & Evolution, 10, 397–402. 10.1016/s0169-5347(00)89155-7 PubMed DOI

Navarro, M. N. , Cassaing, J. , & Croset, H. (1989). Demography and dispersal of one feral insular population of Mus domesticus: Comparison with one mainland population. Zeitschrift für Säugetierkunde, 54, 286–295.

Newman, M. E. J. , & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113. 10.1103/PhysRevE.69.026113 PubMed DOI

Noyes, R. F. , Barrett, G. W. , & Taylor, D. H. (1982). Social structure of feral house mouse (Mus musculus L.) populations: Effects of resource partitioning. Behavioral Ecology and Sociobiology, 10, 157–163.

Odden, M. , Ims, R. , Støen, O. G. , Swenson, J. E. , & Andreassen, H. P. (2014). Bears are simply voles writ large: Social structure determines the mechanisms of intrinsic population regulation in mammals. Oecologia, 175, 1–10. 10.1007/s00442-014-2892-z PubMed DOI PMC

Pelikán, J. (1981). Patterns of reproduction in the house mouse. In Berry R. J. (Ed.), Biology of the house mouse (Vol. 47, pp. 205–224. Symposia of the Zoological Society of London, vol.). Academic Press, Ltd.

Perony, N. , Tessone, C. J. , König, B. , & Schweitzer, F. (2012). How random is social behaviour? Disentangling social complexity through the study of a wild house mouse population. PLOS Computational Biology, 8, e1002786. 10.1371/journal.pcbi.1002786 PubMed DOI PMC

Petrusewicz, K. , & Andrzejewski, R. (1962). Natural history of a free‐living population of house mice (Mus musculus Linnaeus), with particular reference to groupings within the population. Ekologia Polska A, 10, 85–122.

Phifer‐Rixey, M. , Bonhomme, F. , Boursot, P. , Churchill, G. A. , Piálek, J. , Tucker, P. K. , & Nachman, M. W. (2012). Adaptive evolution and effective population size in wild house mice. Molecular Biology and Evolution, 29, 2949–2955. 10.1093/molbev/mss105 PubMed DOI PMC

Piálek, J. , Vyskočilová, M. , Bímová, B. , Havelková, D. , Piálková, J. , Dufková, P. , Bencová, V. , Ďureje, Ľ. , Albrecht, T. , Hauffe, H. C. , Macholán, M. , Munclinger, P. , Strochová, R. , Zajícová, A. , Holáň, V. , Gregorová, S. , & Forejt, J. (2008). Development of unique house mouse resources suitable for evolutionary studies of speciation. Journal of Heredity, 99, 34–44. 10.1093/jhered/esm083 PubMed DOI

Plate, T. , & Heiberger, R. (2016). Abind: Combine multidimensional arrays. R package version 1.4‐5.

Pocock, M. J. O. , Hauffe, H. C. , & Searle, J. B. (2005). Dispersal in house mice. Biological Journal of the Linnean Society, 84, 565–583. 10.1111/j.1095-8312.2005.00455.x DOI

Pocock, M. J. O. , Searle, J. B. , & White, P. C. L. (2004). Adaptations of animals to commensal habitats: Population dynamics of house mice Mus musculus domesticus on farms. Journal of Animal Ecology, 73, 878–888.

RCore Team . (2019). R: A language and environment for statistical computing. Computing R Foundation for Statistical Computing .

Reimer, J. D. , & Petras, M. L. (1967). Breeding structure of the house mouse, Mus musculus in a population cage. Journal of Mammalogy, 48, 88–99. PubMed

Rosvall, M. , Axelsson, D. , & Bergstrom, C. T. (2009). The map equation. The European Physical Journal Special Topics, 178, 13–23. 10.1140/epjst/e2010-01179-1 DOI

Rosvall, M. , & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 1118–1123. 10.1073/pnas.0706851105 PubMed DOI PMC

Rymer, T. L. , & Pillay, N. (2018). An integrated understanding of paternal care in mammals: Lessons from the rodents. Journal of Zoology, 306, 69–76. 10.1111/jzo.12575 DOI

Sage, R. D. (1981). Wild mice. In Foster H. L., Small J. D., & Fox J. G. (Eds.), The mouse in biomedical research (Vol. 1, pp. 39–90). Academic Press.

Salcedo, T. , Geraldes, A. , & Nachman, M. W. (2007). Nucleotide variation in wild and inbred mice. Genetics, 177, 2277–2291. 10.1534/genetics.107.079988 PubMed DOI PMC

Sattenspiel, L. (1987). Population structure and the spread of disease. Human Biology, 59, 11–438. PubMed

Schradin, C. , Lindholm, A. K. , Johannesen, J. , Schoepf, I. , Yuen, C.‐H. , König, B. , & Pillay, N. (2012). Social flexibility and social evolution in mammals: A case study of the African striped mouse (Rhabdomys pumilio). Molecular Ecology, 21, 541–553. 10.1111/j.1365-294X.2011.05256.x PubMed DOI

Selander, R. K. (1970). Behavior and genetic variation in natural populations. American Zoologist, 10, 53–66. PubMed

Singleton, G. R. (1983). The social and genetic structure of a natural colony of house mice, Mus musculus, at Healesville wildlife sanctuary. Australian Journal of Zoology, 31, 155–166.

Singleton, G. R. , & Krebs, C. J. (2007). The secret world of wild mice. In Fox J. G., Davisson M. T., Quinby F. W., Barthold S. W., Newcomer C. E., & Smith A. L. (Eds.), The mouse in biomedical research (Vol. 1, 2nd ed., pp. 25–52). Elsevier. 10.1016/B978-012369454-6/50015-7 DOI

Sites, J. W., Jr. , & Moritz, C. (1987). Chromosomal evolution and speciation revisited. Systematic Zoology, 36, 153–174.

Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 15, 787–792. 10.1126/science.3576198 PubMed DOI

Smadja, C. , Catalan, J. , & Ganem, G. (2004). Strong premating divergence in a unimodal hybrid zone between two subspecies of the house mouse. Journal of Evolutionary Biology, 17, 165–176. 10.1046/j.1420-9101.2003.00647.x PubMed DOI

Snow, G. (2020). TeachingDemos: Demonstrations for teaching and learning. R package version 2.12. https://CRAN.R‐project.org/package=TeachingDemos

Stenseth, N. C. , & Lidicker, W. Z., Jr. (1992). Animal dispersal. Chapman and Hall.

Stone, A. C. , Battistuzzi, F. U. , Kubatko, L. S. , Perry, G. H., Jr. , Trudeau, E. , Lin, H. , & Kumar, S. (2010). More reliable estimates of divergence times in pan using complete mtDNA sequences and accounting for population structure. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 3277–3288. 10.1098/rstb.2010.0096 PubMed DOI PMC

Strehl, A. , & Ghosh, J. (2002). Cluster ensembles ‐ a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617. https://doi.10.1162/153244303321897735

Thornhauser, K. E. , Thoß, M. , Musolf, K. , Klaus, T. , & Penn, D. J. (2014). Multiple paternity in wild house mice (Mus musculus musculus): Effects on offspring genetic diversity and body mass. Ecology and Evolution, 4, 200–209. 10.1002/ece3.920 PubMed DOI PMC

Thrall, P. H. , & Burdon, J. J. (1997). Host‐pathogen dynamics in a metapopulation context: The ecological and evolutionary consequences of being spatial. Journal of Ecology, 85, 743–753. 10.2307/2960598 DOI

Thuesen, P. (1977). A comparison of the agonistic behaviour of Mus musculus musculus L. and Mus musculus domesticus Rutty (Mammalia, Rodentia). Videnskabelige Meddelelser Fra Den Naturhistoriske Forening, 140, 117–128.

Triggs, G. S. (1991). The population ecology of house mice (Mus domesticus) on the isle of may, Scotland. Journal of Zoology, 225, 449–468.

Vahdati, A. R. , & Wagner, A. (2018). Population size affects adaptation in complex ways: Simulations on empirical adaptive landscapes. Evolutionary Biology, 45, 156–169. 10.1007/s11692-017-9440-9 DOI

van Zegeren, K. , & van Oortmerssen, G. A. (1981). Frontier disputes between the west‐ and east‐European house mouse in Schleswig‐Holstein, West Germany. Zeitschrift für Säugetierkunde, 46, 363–369.

Vošlajerová Bímová, B. , Macholán, M. , Baird, S. J. E. , Munclinger, P. , Dufková, P. , Laukaitis, C. M. , Karn, R. C. , Luzynski, K. , Tucker, P. K. , & Piálek, J. (2011). Reinforcement selection actingon the European house mouse hybrid zone. Molecular Ecology, 20, 2403–2424. 10.1111/j.1365-294X.2011.05106.x PubMed DOI

Vošlajerová Bímová, B. , Mikula, O. , Macholán, M. , Janotová, K. , & Hiadlovská, Z. (2016). Female house mice do not differ in their exploratory behaviour from males. Ethology, 122, 298–307. 10.1111/eth.12462 DOI

Walkowa, W. (1981). Structure, dynamics and productivity of mouse populations: A review of studies conducted at the Institute of Ecology, Polish Academy of Sciences. In Berry R. J. (Ed.), Biology of the house mouse (pp. 427–437. Symposia of the Zoological Society of London, vol. 47). Academic Press, Ltd.

Webb, P. I. , Ellison, G. T. H. , Skinner, J. D. , & van Aarde, R. J. (1997). Are feral house mice from the sub‐Antarctic adapted to cold? Zeitschrift für Säugetierkunde, 62, 58–62.

White, M. J. D. (1978). Modes of speciation. W. H. Freeman and Co.

Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string operations. R package version 1.4.0. https://CRAN.R‐project.org/package=stringr

Wilson, A. C. , Bush, G. L. , Case, S. M. , & King, M. C. (1975). Social structuring of mammalian populations and the rate of chromosomal evolution. Proceedings of the National Academy of Sciences of the United States of America, 72, 5061–5065. PubMed PMC

Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...