Thresholds for surfactant use in preterm neonates: a network meta-analysis

. 2023 Jul ; 108 (4) : 333-341. [epub] 20221209

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu systematický přehled, metaanalýza, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36600484
Odkazy

PubMed 36600484
PubMed Central PMC10313962
DOI 10.1136/archdischild-2022-324184
PII: archdischild-2022-324184
Knihovny.cz E-zdroje

OBJECTIVE: To perform a network meta-analysis of randomised controlled trials of different surfactant treatment strategies for respiratory distress syndrome (RDS) to assess if a certain fraction of inspired oxygen (FiO2) is optimal for selective surfactant therapy. DESIGN: Systematic review and network meta-analysis using Bayesian analysis of randomised trials of prophylactic versus selective surfactant for RDS. SETTING: Cochrane Central Register of Controlled Trials, MEDLINE, Embase and Science Citation Index Expanded. PATIENTS: Randomised trials including infants under 32 weeks of gestational age. INTERVENTIONS: Intratracheal surfactant, irrespective of type or dose. MAIN OUTCOME MEASURES: Our primary outcome was neonatal mortality, compared between groups treated with selective surfactant therapy at different thresholds of FiO2. Secondary outcomes included respiratory morbidity and major complications of prematurity. RESULTS: Of 4643 identified references, 14 studies involving 5298 participants were included. We found no statistically significant differences between 30%, 40% and 50% FiO2 thresholds. A sensitivity analysis of infants treated in the era of high antenatal steroid use and nasal continuous positive airway pressure as initial mode of respiratory support showed no difference in mortality, RDS or intraventricular haemorrhage alone but suggested an increase in the combined outcome of major morbidities in the 60% threshold. CONCLUSION: Our results do not show a clear benefit of surfactant treatment at any threshold of FiO2. The 60% threshold was suggestive of increased morbidity. There was no advantage seen with prophylactic treatment. Randomised trials of different thresholds for surfactant delivery are urgently needed to guide clinicians and provide robust evidence. PROSPERO REGISTRATION NUMBER: CRD42020166620.

Komentář v

doi: 10.1136/archdischild-2022-325061 PubMed

Zobrazit více v PubMed

Halliday HL. The fascinating story of surfactant. J Paediatr Child Health 2017;53:327–32. 10.1111/jpc.13500 PubMed DOI

Sweet DG, Carnielli V, Greisen G, et al. . European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology 2019;115:432–50. 10.1159/000499361 PubMed DOI PMC

Soll RF, Morley CJ. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2001;2:Cd000510. 10.1002/14651858.CD000510 PubMed DOI

Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2012;3:Cd000510. 10.1002/14651858.CD000510.pub2 PubMed DOI

Dani C. Surfactant treatment threshold during nCPAP for the treatment of preterm infants with respiratory distress syndrome. Am J Perinatol 2016;33:925–9. 10.1055/s-0036-1582395 PubMed DOI

Dargaville PA, Aiyappan A, De Paoli AG, et al. . Continuous positive airway pressure failure in preterm infants: incidence, predictors and consequences. Neonatology 2013;104:8–14. 10.1159/000346460 PubMed DOI

Polin RA, Carlo WA, et al. , Committee on Fetus and Newborn . Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics 2014;133:156–63. 10.1542/peds.2013-3443 PubMed DOI

Excellence NIfHaC . Specialist neonatal respiratory care for babies born preterm. NICE guideline [NG124], 2019. PubMed

Ng EH, Shah V. Guidelines for surfactant replacement therapy in neonates. Paediatr Child Health 2021;26:35–49. 10.1093/pch/pxaa116 PubMed DOI PMC

Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res 1999;46:641–3. 10.1203/00006450-199912000-00007 PubMed DOI

Papile LA, Burstein J, Burstein R, et al. . Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 GM. J Pediatr 1978;92:529–34. 10.1016/S0022-3476(78)80282-0 PubMed DOI

de Vries LS, Eken P, Dubowitz LM. The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res 1992;49:1–6. 10.1016/S0166-4328(05)80189-5 PubMed DOI

Neu J. Necrotizing enterocolitis: the search for a unifying pathogenic theory leading to prevention. Pediatr Clin North Am 1996;43:409–32. 10.1016/s0031-3955(05)70413-2 PubMed DOI PMC

International Committee for the Classification of Retinopathy of Prematurity . The International classification of retinopathy of prematurity revisited. Arch Ophthalmol 2005;123:991–9. 10.1001/archopht.123.7.991 PubMed DOI

Varni JW, Seid M, Kurtin PS. PedsQL 4.0: reliability and validity of the pediatric quality of life inventory version 4.0 generic core scales in healthy and patient populations. Med Care 2001;39:800–12. 10.1097/00005650-200108000-00006 PubMed DOI

Sterne JAC, Savović J, Page MJ, et al. . Rob 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898. 10.1136/bmj.l4898 PubMed DOI

Severini TA. Bayesian interval estimates which are also confidence intervals. J R Stat Soc 1993;55:533–40. 10.1111/j.2517-6161.1993.tb01921.x DOI

Salanti G, Ades AE, Ioannidis JPA. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 2011;64:163–71. 10.1016/j.jclinepi.2010.03.016 PubMed DOI

Chaimani A, Higgins JPT, Mavridis D, et al. . Graphical tools for network meta-analysis in STATA. PLoS One 2013;8:e76654. 10.1371/journal.pone.0076654 PubMed DOI PMC

Mills EJ, Ioannidis JPA, Thorlund K, et al. . How to use an article reporting a multiple treatment comparison meta-analysis. JAMA 2012;308:1246–53. 10.1001/2012.jama.11228 PubMed DOI

Dias S, Sutton AJ, Ades AE, et al. . Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making 2013;33:607–17. 10.1177/0272989X12458724 PubMed DOI PMC

Bevilacqua G, Chernev T, Parmigiani S, et al. . Use of surfactant for prophylaxis versus rescue treatment of respiratory distress syndrome: experience from an Italian-Bulgarian trial. Acta Biomed Ateneo Parmense 1997;68 Suppl 1:47–54. PubMed

de Winter JP, Egberts J, de Kleine MJ, et al. . [Prevention and treatment of respiratory distress syndrome in premature infants using intratracheally administered surfactants]. Ned Tijdschr Geneeskd 1992;136:2018–24. PubMed

Dilmen U, Özdemir R, Tatar Aksoy H, et al. . Early regular versus late selective poractant treatment in preterm infants born between 25 and 30 gestational weeks: a prospective randomized multicenter study. J Matern Fetal Neonatal Med 2014;27:411–5. 10.3109/14767058.2013.818120 PubMed DOI

Dunn MS, Kaempf J, de Klerk A, et al. . Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics 2011;128:e1069–76. 10.1542/peds.2010-3848 PubMed DOI

Egberts J, de Winter JP, Sedin G, et al. . Comparison of prophylaxis and rescue treatment with Curosurf in neonates less than 30 weeks' gestation: a randomized trial. Pediatrics 1993;92:768–74. 10.1542/peds.92.6.768 PubMed DOI

SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Finer NN, Carlo WA, et al. . Early CPAP versus surfactant in extremely preterm infants. N Engl J Med 2010;362:1970–9. 10.1056/NEJMoa0911783 PubMed DOI PMC

Kandraju H, Murki S, Subramanian S, et al. . Early routine versus late selective surfactant in preterm neonates with respiratory distress syndrome on nasal continuous positive airway pressure: a randomized controlled trial. Neonatology 2013;103:148–54. 10.1159/000345198 PubMed DOI

Kattwinkel J, Bloom BT, Delmore P, et al. . Prophylactic administration of calf lung surfactant extract is more effective than early treatment of respiratory distress syndrome in neonates of 29 through 32 weeks' gestation. Pediatrics 1993;92:90–8. PubMed

Kendig JW, Notter RH, Cox C, et al. . A comparison of surfactant as immediate prophylaxis and as rescue therapy in newborns of less than 30 weeks' gestation. N Engl J Med 1991;324:865–71. 10.1056/NEJM199103283241301 PubMed DOI

Lefort S, Diniz EMA, Vaz FAC. Clinical course of premature infants intubated in the delivery room, submitted or not to porcine-derived lung surfactant therapy within the first hour of life. J Matern Fetal Neonatal Med 2003;14:187–96. 10.1080/jmf.14.3.187.196 PubMed DOI

Merritt TA, Hallman M, Berry C, et al. . Randomized, placebo-controlled trial of human surfactant given at birth versus rescue administration in very low birth weight infants with lung immaturity. J Pediatr 1991;118:581–94. 10.1016/S0022-3476(05)83387-6 PubMed DOI

Rojas MA, Lozano JM, Rojas MX, et al. . Very early surfactant without mandatory ventilation in premature infants treated with early continuous positive airway pressure: a randomized, controlled trial. Pediatrics 2009;123:137–42. 10.1542/peds.2007-3501 PubMed DOI

Sandri F, Plavka R, Ancora G, et al. . Prophylactic or early selective surfactant combined with nCPAP in very preterm infants. Pediatrics 2010;125:e1402–9. 10.1542/peds.2009-2131 PubMed DOI

Walti H, Paris-Llado J, Bréart G, et al. . Porcine surfactant replacement therapy in newborns of 25-31 weeks' gestation: a randomized, multicentre trial of prophylaxis versus rescue with multiple low doses. The French Collaborative multicentre study Group. Acta Paediatr 1995;84:913–21. 10.1111/j.1651-2227.1995.tb13792.x PubMed DOI

Ambalavanan N, Carlo WA, Wrage LA, et al. . Paco2 in surfactant, positive pressure, and oxygenation randomised trial (support). Arch Dis Child Fetal Neonatal Ed 2015;100:F145–9. 10.1136/archdischild-2014-306802 PubMed DOI PMC

SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Carlo WA, Finer NN, et al. . Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010;362:1959–69. 10.1056/NEJMoa0911781 PubMed DOI PMC

CE M, JW K, CF T. Early neurodevelopmental outcome of premature infants in a randomized trial comparing preventilatory and postventilatory surfactant therapy for respiratory distress syndrome. Ann Neurol 1990;28:412–3.

CE M, JW K, CF T. Early neurodevelopmental outcome of premature-infants in a ransomized trial comparing prophylactic and rescue surfactant therapy. Pediatric Research 1991;29:A261.

Hintz SR, Barnes PD, Bulas D, et al. . Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics 2015;135:e32–42. 10.1542/peds.2014-0898 PubMed DOI PMC

Navarrete CT, Wrage LA, Carlo WA, et al. . Growth outcomes of preterm infants exposed to different oxygen saturation target ranges from birth. J Pediatr 2016;176:62–8. 10.1016/j.jpeds.2016.05.070 PubMed DOI PMC

Pelkonen AS, Hakulinen AL, Turpeinen M, et al. . Effect of neonatal surfactant therapy on lung function at school age in children born very preterm. Pediatr Pulmonol 1998;25:182–90. 10.1002/(SICI)1099-0496(199803)25:3<182::AID-PPUL8>3.0.CO;2-O PubMed DOI

Sinkin RA, Kramer BM, Merzbach JL, et al. . School-Age follow-up of prophylactic versus rescue surfactant trial: pulmonary, neurodevelopmental, and educational outcomes. Pediatrics 1998;101:E11. 10.1542/peds.101.5.e11 PubMed DOI

Stevens TP, Finer NN, Carlo WA, et al. . Respiratory outcomes of the surfactant positive pressure and oximetry randomized trial (support). J Pediatr 2014;165:240–9. 10.1016/j.jpeds.2014.02.054 PubMed DOI PMC

Vaucher YE, Harker L, Merritt TA, et al. . Outcome at twelve months of adjusted age in very low birth weight infants with lung immaturity: a randomized, placebo-controlled trial of human surfactant. J Pediatr 1993;122:126–32. 10.1016/S0022-3476(05)83505-X PubMed DOI

Vaucher YE, Peralta-Carcelen M, Finer NN, et al. . Neurodevelopmental outcomes in the early CPAP and pulse oximetry trial. N Engl J Med 2012;367:2495–504. 10.1056/NEJMoa1208506 PubMed DOI PMC

Vohr BR, Heyne R, Bann CM, et al. . Extreme preterm infant rates of overweight and obesity at school age in the support neuroimaging and neurodevelopmental outcomes cohort. J Pediatr 2018;200:132–9. 10.1016/j.jpeds.2018.04.073 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...