The SMARCD Family of SWI/SNF Accessory Proteins Is Involved in the Transcriptional Regulation of Androgen Receptor-Driven Genes and Plays a Role in Various Essential Processes of Prostate Cancer
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36611918
PubMed Central
PMC9818446
DOI
10.3390/cells12010124
PII: cells12010124
Knihovny.cz E-resources
- Keywords
- SMARCD1/BAF60A, SMARCD2/BAF60B, SMARCD3/BAF60C, SWI/SNF complex, chromatin-remodeling, prostate cancer,
- MeSH
- Receptors, Androgen * genetics metabolism MeSH
- Chromosomal Proteins, Non-Histone genetics metabolism MeSH
- Humans MeSH
- Prostatic Neoplasms * genetics MeSH
- Gene Expression Regulation MeSH
- Chromatin Assembly and Disassembly genetics MeSH
- Signal Transduction MeSH
- Transcription Factors metabolism MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Receptors, Androgen * MeSH
- Chromosomal Proteins, Non-Histone MeSH
- SMARCD1 protein, human MeSH Browser
- Transcription Factors MeSH
Previous studies have demonstrated an involvement of chromatin-remodelling SWI/SNF complexes in the development of prostate cancer, suggesting both tumor suppressor and oncogenic activities. SMARCD1/BAF60A, SMARCD2/BAF60B, and SMARCD3/BAF60C are mutually exclusive accessory subunits that confer functional specificity and are components of all known SWI/SNF subtypes. To assess the role of SWI/SNF in prostate tumorigenesis, we studied the functions and functional relations of the SMARCD family members. Performing RNA-seq in LnCAP cells grown in the presence or absence of dihydrotestosterone, we found that the SMARCD proteins are involved in the regulation of numerous hormone-dependent AR-driven genes. Moreover, we demonstrated that all SMARCD proteins can regulate AR-downstream targets in androgen-depleted cells, suggesting an involvement in the progression to castration-resistance. However, our approach also revealed a regulatory role for SMARCD proteins through antagonization of AR-signalling. We further demonstrated that the SMARCD proteins are involved in several important cellular processes such as the maintenance of cellular morphology and cytokinesis. Taken together, our findings suggest that the SMARCD proteins play an important, yet paradoxical, role in prostate carcinogenesis. Our approach also unmasked the complex interplay of paralogue SWI/SNF proteins that must be considered for the development of safe and efficient therapies targeting SWI/SNF.
Core Facilities Medical University of Vienna 1090 Vienna Austria
Department of Analytical Chemistry Faculty of Chemistry University of Vienna 1010 Vienna Austria
Department of Laboratory Medicine Medical University of Vienna 1090 Vienna Austria
Department of Urology 2nd Faculty of Medicine Charles University 150 06 Prag Czech Republic
Department of Urology Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria
Department of Urology University of Texas Southwestern Dallas TX 75390 USA
Department of Urology Weill Cornell Medical College New York NY 10065 USA
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman 19328 Jordan
Joint Metabolome Facility University of Vienna and Medical University Vienna 1090 Vienna Austria
See more in PubMed
Helming K.C., Wang X., Roberts C.W.M. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell. 2014;26:309–317. doi: 10.1016/j.ccr.2014.07.018. PubMed DOI PMC
Hargreaves D.C., Crabtree G.R. ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms. Cell Res. 2011;21:396–420. doi: 10.1038/cr.2011.32. PubMed DOI PMC
Euskirchen G.M., Auerbach R.K., Davidov E., Gianoulis T.A., Zhong G., Rozowsky J., Bhardwaj N., Gerstein M.B., Snyder M. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet. 2011;7:e1002008. doi: 10.1371/journal.pgen.1002008. PubMed DOI PMC
Ogiwara H., Ui A., Otsuka A., Satoh H., Yokomi I., Nakajima S., Yasui A., Yokota J., Kohno T. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene. 2011;30:2135–2146. doi: 10.1038/onc.2010.592. PubMed DOI
Hays E., Nettleton E., Carter C., Morales M., Vo L., Passo M., Vélez-Cruz R. The SWI/SNF ATPase BRG1 stimulates DNA end resection and homologous recombination by reducing nucleosome density at DNA double strand breaks and by promoting the recruitment of the CtIP nuclease. Cell Cycle. 2020;19:3096–3114. doi: 10.1080/15384101.2020.1831256. PubMed DOI PMC
Euskirchen G., Auerbach R.K., Snyder M. SWI/SNF chromatin-remodeling factors: Multiscale analyses and diverse functions. J. Biol. Chem. 2012;287:30897–30905. doi: 10.1074/jbc.R111.309302. PubMed DOI PMC
Kadoch C., Hargreaves D.C., Hodges C., Elias L., Ho L., Ranish J., Crabtree G.R. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 2013;45:592–601. doi: 10.1038/ng.2628. PubMed DOI PMC
Shain A.H., Pollack J.R. The Spectrum of SWI/SNF Mutations, Ubiquitous in Human Cancers. PLoS ONE. 2013;8:e55119. doi: 10.1371/journal.pone.0055119. PubMed DOI PMC
Lee R.S., Roberts C.W.M. Linking the SWI/SNF complex to prostate cancer. Nat. Genet. 2013;45:1268–1269. doi: 10.1038/ng.2805. PubMed DOI
Sun A., Tawfik O., Gayed B., Thrasher J.B., Hoestje S., Li C., Li B. Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers. Prostate. 2007;67:203–213. doi: 10.1002/pros.20521. PubMed DOI
Mota S.T.S., Vecchi L., Zóia M.A.P., Oliveira F.M., Alves D.A., Dornelas B.C., Bezerra S.M., Andrade V.P., Maia Y.C.P., Neves A.F., et al. New Insights into the Role of Polybromo-1 in Prostate Cancer. Int. J. Mol. Sci. 2019;20:2852. doi: 10.3390/ijms20122852. PubMed DOI PMC
Cyrta J., Augspach A., De Filippo M.R., Prandi D., Thienger P., Benelli M., Cooley V., Bareja R., Wilkes D., Chae S.-S., et al. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat. Commun. 2020;11:5549. doi: 10.1038/s41467-020-19328-1. PubMed DOI PMC
Xiao L., Parolia A., Qiao Y., Bawa P., Eyunni S., Mannan R., Carson S.E., Chang Y., Wang X., Zhang Y., et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature. 2022;601:434–439. doi: 10.1038/s41586-021-04246-z. PubMed DOI PMC
Prensner J.R., Iyer M.K., Sahu A., Asangani I.A., Cao Q., Patel L., Vergara I.A., Davicioni E., Erho N., Ghadessi M., et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 2013;45:1392–1398. doi: 10.1038/ng.2771. PubMed DOI PMC
Shen H., Powers N., Saini N., Comstock C.E.S., Sharma A., Weaver K., Revelo M.P., Gerald W., Williams E., Jessen W.J., et al. The SWI/SNF ATPase Brm is a gatekeeper of proliferative control in prostate cancer. Cancer Res. 2008;68:10154–10162. doi: 10.1158/0008-5472.CAN-08-1794. PubMed DOI PMC
Dai Y., Ngo D., Jacob J., Forman L.W., Faller D.V. Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis. 2008;29:1725–1733. doi: 10.1093/carcin/bgn117. PubMed DOI PMC
van de Wijngaart D.J., Dubbink H.J., Molier M., de Vos C., Trapman J., Jenster G. Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. Mol. Endocrinol. 2009;23:1776–1786. doi: 10.1210/me.2008-0280. PubMed DOI PMC
Sun D., Lee Y.S., Malhotra A., Kim H.K., Matecic M., Evans C., Jensen R.V., Moskaluk C.A., Dutta A. miR-99 Family of microRNAs suppressemiR-99 family s the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71:1313–1324. doi: 10.1158/0008-5472.CAN-10-1031. PubMed DOI PMC
Weissman B., Knudsen K.E. Hijacking the chromatin remodeling machinery: Impact of SWI/SNF perturbations in cancer. Cancer Res. 2009;69:8223–8230. doi: 10.1158/0008-5472.CAN-09-2166. PubMed DOI PMC
Michel B.C., D’Avino A.R., Cassel S.H., Mashtalir N., McKenzie Z.M., McBride M.J., Valencia A.M., Zhou Q., Bocker M., Soares L.M.M., et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 2018;20:1410–1420. doi: 10.1038/s41556-018-0221-1. PubMed DOI PMC
GRCh38 - hg38 - Genome - Assembly - NCBI. [(accessed on 12 March 2022)]; Available online: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
GENCODE - Human Release 39. [(accessed on 12 March 2022)]. Available online: https://www.gencodegenes.org/human/
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Goedhart J., Luijsterburg M.S. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 2020;10:20560. doi: 10.1038/s41598-020-76603-3. PubMed DOI PMC
Breuer K., Foroushani A.K., Laird M.R., Chen C., Sribnaia A., Lo R., Winsor G.L., Hancock R.E.W., Brinkman F.S.L., Lynn D.J. InnateDB: Systems biology of innate immunity and beyond—Recent updates and continuing curation. Nucleic Acids Res. 2013;41:D1228–D1233. doi: 10.1093/nar/gks1147. PubMed DOI PMC
Hänzelmann S., Castelo R., Guinney J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7. doi: 10.1186/1471-2105-14-7. PubMed DOI PMC
Liberzon A., Subramanian A., Pinchback R., Thorvaldsdóttir H., Tamayo P., Mesirov J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–1740. doi: 10.1093/bioinformatics/btr260. PubMed DOI PMC
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Jacobsen A., Byrne C.J., Heuer M.L., Larsson E., et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2:401–404. doi: 10.1158/2159-8290.CD-12-0095. PubMed DOI PMC
Gao J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013;6:pl1. doi: 10.1126/scisignal.2004088. PubMed DOI PMC
Bello D., Webber M.M., Kleinman H.K., Wartinger D.D., Rhim J.S. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis. 1997;18:1215–1223. doi: 10.1093/carcin/18.6.1215. PubMed DOI
Sampson N., Neuwirt H., Puhr M., Klocker H., Eder I.E. In vitro model systems to study androgen receptor signaling in prostate cancer. Endocr. Relat. Cancer. 2013;20:R49–R84. doi: 10.1530/ERC-12-0401. PubMed DOI
Horoszewicz J.S., Leong S.S., Kawinski E., Karr J.P., Rosenthal H., Chu T.M., Mirand E.A., Murphy G.P. LNCaP model of human prostatic carcinoma. Cancer Res. 1983;43:1809–1818. PubMed
Wu H.-C., Hsieh J.-T., Gleave M.E., Brown N.M., Pathak S., Chung L.W.K. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: Role of bone stromal cells. Int. J. Cancer. 1994;57:406–412. doi: 10.1002/ijc.2910570319. PubMed DOI
Stone K.R., Mickey D.D., Wunderli H., Mickey G.H., Paulson D.F. Isolation of a human prostate carcinoma cell line (DU 145) Int. J. Cancer. 1978;21:274–281. doi: 10.1002/ijc.2910210305. PubMed DOI
Kaighn M.E., Narayan K.S., Ohnuki Y., Lechner J.F., Jones L.W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3) Investig. Urol. 1979;17:16–23. PubMed
Heemers H.V., Regan K.M., Dehm S.M., Tindall D.J. Androgen Induction of the Androgen Receptor Coactivator Four and a Half LIM Domain Protein-2: Evidence for a Role for Serum Response Factor in Prostate Cancer. Cancer Res. 2007;67:10592–10599. doi: 10.1158/0008-5472.CAN-07-1917. PubMed DOI
Heemers H.V. Targeting Androgen Receptor Action for Prostate Cancer Treatment: Does the Post-Receptor Level Provide Novel Opportunities? Int. J. Biol. Sci. 2014;10:576. doi: 10.7150/ijbs.8479. PubMed DOI PMC
Luke M.C., Coffey D.S. Human Androgen Receptor Binding to the Androgen Response Element of Prostate Specific Antigen. J. Androl. 1994;15:41–51. doi: 10.1002/J.1939-4640.1994.TB01682.X. PubMed DOI
Chen Z., Song X., Li Q., Xie L., Guo T., Su T., Tang C., Chang X., Liang B., Huang D. Androgen Receptor-Activated Enhancers Simultaneously Regulate Oncogene TMPRSS2 and lncRNA PRCAT38 in Prostate Cancer. Cells. 2019;8:864. doi: 10.3390/cells8080864. PubMed DOI PMC
Hååg P., Bektic J., Bartsch G., Klocker H., Eder I.E. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J. Steroid Biochem. Mol. Biol. 2005;96:251–258. doi: 10.1016/j.jsbmb.2005.04.029. PubMed DOI
Dubbink H.J., Hersmus R., Pike A.C.W., Molier M., Brinkmann A.O., Jenster G., Trapman J. Androgen receptor ligand-binding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping. Mol. Endocrinol. 2006;20:1742–1755. doi: 10.1210/me.2005-0348. PubMed DOI
Magee J.A., Chang L.W., Stormo G.D., Milbrandt J. Direct, Androgen Receptor-Mediated Regulation of the FKBP5 Gene via a Distal Enhancer Element. Endocrinology. 2006;147:590–598. doi: 10.1210/en.2005-1001. PubMed DOI
Vicente C.M., Lima M.A., Nader H.B., Toma L. SULF2 overexpression positively regulates tumorigenicity of human prostate cancer cells. J. Exp. Clin. Cancer Res. 2015;34:25. doi: 10.1186/s13046-015-0141-x. PubMed DOI PMC
Li L., Hao J., Yan C.Q., Wang H.F., Meng B., Cai S.Y. Inhibition of microRNA-300 inhibits cell adhesion, migration, and invasion of prostate cancer cells by promoting the expression of DAB1. Cell Cycle. 2020;19:2793–2810. doi: 10.1080/15384101.2020.1823730. PubMed DOI PMC
Yun H., Xie J., Olumi A.F., Ghosh R., Kumar A.P. Activation of AKR1C1/ERβ induces apoptosis by downregulation of c-FLIP in prostate cancer cells: A prospective therapeutic opportunity. Oncotarget. 2015;6:11600–11613. doi: 10.18632/oncotarget.3417. PubMed DOI PMC
Liu C.M., Hsieh C.L., He Y.C., Lo S.J., Liang J.A., Hsieh T.F., Josson S., Chung L.W.K., Hung M.C., Sung S.Y. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression. PLoS ONE. 2013;8:e53795. doi: 10.1371/journal.pone.0053795. PubMed DOI PMC
Wan S., Xi M., Zhao H.B., Hua W., Liu Y.L., Zhou Y.L., Zhuo Y.J., Liu Z.Z., Cai Z.D., Wan Y.P., et al. HMGCS2 functions as a tumor suppressor and has a prognostic impact in prostate cancer. Pathol. Res. Pract. 2019;215:152464. doi: 10.1016/j.prp.2019.152464. PubMed DOI
Hettel D., Sharifi N. HSD3B1 status as a biomarker of androgen deprivation resistance and implications for prostate cancer. Nat. Rev. Urol. 2018;15:191–196. doi: 10.1038/nrurol.2017.201. PubMed DOI
Gkika D., Lemonnier L., Shapovalov G., Gordienko D., Poux C., Bernardini M., Bokhobza A., Bidaux G., Degerny C., Verreman K., et al. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. J. Cell Biol. 2015;208:89–107. doi: 10.1083/jcb.201402076. PubMed DOI PMC
Song B., Park S.H., Zhao J.C., Fong K.W., Li S., Lee Y., Yang Y.A., Sridhar S., Lu X., Abdulkadir S.A., et al. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J. Clin. Investig. 2019;129:569–582. doi: 10.1172/JCI122367. PubMed DOI PMC
Rinne S.S., Abouzayed A., Gagnon K., Tolmachev V., Orlova A. 66Ga-PET-imaging of GRPR-expression in prostate cancer: Production and characterization of [66Ga]Ga-NOTA-PEG2-RM26. Sci. Rep. 2021;11:3631. doi: 10.1038/s41598-021-82995-7. PubMed DOI PMC
Xue L., Zhu Z., Wang Z., Li H., Zhang P., Wang Z., Chen Q., Chen H., Chong T. Knockdown of prostaglandin reductase 1 (PTGR1) suppresses prostate cancer cell proliferation by inducing cell cycle arrest and apoptosis. Biosci. Trends. 2016;10:133–139. doi: 10.5582/bst.2016.01045. PubMed DOI
Di Donato M., Ostacolo C., Giovannelli P., Di Sarno V., Monterrey I.M.G., Campiglia P., Migliaccio A., Bertamino A., Castoria G. Therapeutic potential of TRPM8 antagonists in prostate cancer. Sci. Rep. 2021;11:23232. doi: 10.1038/s41598-021-02675-4. PubMed DOI PMC
Antunes A.A., Reis S.T., Leite K.R., Real D.M., Sousa-Canavez J.M., Camara-Lopes L.H., Dall’Oglio M.F., Srougi M. PGC and PSMA in prostate cancer diagnosis: Tissue analysis from biopsy samples. Int. Braz. J. Urol. 2013;39:649–656. doi: 10.1590/S1677-5538.IBJU.2013.05.06. PubMed DOI
Mandel A., Larsson P., Sarwar M., Semenas J., Syed Khaja A.S., Persson J.L. The interplay between AR, EGF receptor and MMP-9 signaling pathways in invasive prostate cancer. Mol. Med. 2018;24:34. doi: 10.1186/s10020-018-0035-4. PubMed DOI PMC
Levina E., Ji H., Chen M., Baig M., Oliver D., Ohouo P., Lim C.-u., Schools G., Carmack S., Ding Y., et al. Identification of novel genes that regulate androgen receptor signaling and growth of androgen-deprived prostate cancer cells. Oncotarget. 2015;6:13088–13104. doi: 10.18632/oncotarget.3743. PubMed DOI PMC
Sharifi N., Gulley J.L., Dahut W.L. Androgen Deprivation Therapy for Prostate Cancer. JAMA. 2005;294:238–244. doi: 10.1001/jama.294.2.238. PubMed DOI
Karantanos T., Corn P.G., Thompson T.C. Prostate cancer progression after androgen deprivation therapy: Mechanisms of castrate-resistance and novel therapeutic approaches. Oncogene. 2013;32:5501–5511. doi: 10.1038/onc.2013.206. PubMed DOI PMC
Liang J., Wang L., Poluben L., Nouri M., Arai S., Xie L., Voznesensky O.S., Cato L., Yuan X., Russo J.W., et al. Androgen Receptor Splice Variant 7 Functions Independently of the Full Length Receptor in Prostate Cancer Cells. Cancer Lett. 2021;519:172–184. doi: 10.1016/j.canlet.2021.07.013. PubMed DOI PMC
Cato L., de Tribolet-Hardy J., Lee I., Rottenberg J.T., Coleman I., Melchers D., Houtman R., Xiao T., Li W., Uo T., et al. ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cancer Cell. 2019;35:401–413. doi: 10.1016/j.ccell.2019.01.008. PubMed DOI PMC
Antonarakis E.S., Lu C., Wang H., Luber B., Nakazawa M., Roeser J.C., Chen Y., Mohammad T.A., Chen Y., Fedor H.L., et al. AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. N. Engl. J. Med. 2014;371:1028–1038. doi: 10.1056/NEJMoa1315815. PubMed DOI PMC
Thomas E., Thankan R.S., Purushottamachar P., Huang W., Kane M.A., Zhang Y., Ambulos N.P., Weber D.J., Njar V.C.O. Novel AR/AR-V7 and Mnk1/2 Degrader, VNPP433-3β: Molecular Mechanisms of Action and Efficacy in AR-Overexpressing Castration Resistant Prostate Cancer In Vitro and In Vivo Models. Cells. 2022;11:2699. doi: 10.3390/cells11172699. PubMed DOI PMC
Thomas E., Thankan R.S., Purushottamachar P., Huang W., Kane M.A., Zhang Y., Ambulos N., Weber D.J., Njar V.C.O. Transcriptome profiling reveals that VNPP433-3β, the lead next-generation galeterone analog inhibits prostate cancer stem cells by downregulating epithelial-mesenchymal transition and stem cell markers. Mol. Carcinog. 2022;61:643–654. doi: 10.1002/mc.23406. PubMed DOI PMC
Hu R., Dunn T.A., Wei S., Isharwal S., Veltri R.W., Humphreys E., Han M., Partin A.W., Vessella R.L., Isaacs W.B., et al. Ligand-independent Androgen Receptor Variants Derived from Splicing of Cryptic Exons Signify Hormone Refractory Prostate Cancer. Cancer Res. 2009;69:16–22. doi: 10.1158/0008-5472.CAN-08-2764. PubMed DOI PMC
Guo Z., Yang X., Sun F., Jiang R., Linn D.E., Chen H., Chen H., Kong X., Melamed J., Tepper C.G., et al. A Novel Androgen Receptor Splice Variant Is Upregulated during Prostate Cancer Progression and Promotes Androgen-depletion-resistant Growth. Cancer Res. 2009;69:2305–2313. doi: 10.1158/0008-5472.CAN-08-3795. PubMed DOI PMC
Wadosky K.M., Koochekpour S. Androgen receptor splice variants and prostate cancer: From bench to bedside. Oncotarget. 2017;8:18550–18576. doi: 10.18632/oncotarget.14537. PubMed DOI PMC
Odero-Marah V., Hawsawi O., Henderson V., Sweeney J. Epithelial-Mesenchymal Transition (EMT) and Prostate Cancer. Adv. Exp. Med. Biol. 2018;1095:101–110. doi: 10.1007/978-3-319-95693-0_6. PubMed DOI
Shi Q., King R.W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature. 2005;437:1038–1042. doi: 10.1038/nature03958. PubMed DOI
Ertl I., Porta-De-La-Riva M., Gómez-Orte E., Rubio-Peña K., Corrales D., Cornes E., Fontrodona L., Osteikoetxea X., Ayuso C., Askjaer P., et al. Functional interplay of two paralogs encoding SWI/SNF chromatin-remodeling accessory subunits during Caenorhabditis elegans development. Genetics. 2016;202:961–975. doi: 10.1534/genetics.115.183533. PubMed DOI PMC
Wanior M., Krämer A., Knapp S., Joerger A.C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene. 2021;40:3637–3654. doi: 10.1038/s41388-021-01781-x. PubMed DOI PMC
Wang P., Zhou R., Thomas P., Zhao L., Zhou R., Mandal S., Jolly M.K., Richard D.J., Rehm B.H., Ostrikov K., et al. Epithelial-to-mesenchymal transition enhances cancer cell sensitivity to cytotoxic effects of zcold atmospheric plasmas in breast and bladder cancer systems. Cancers. 2021;13:2889. doi: 10.3390/cancers13122889. PubMed DOI PMC
Low SMARCD3 expression is associated with poor prognosis in patients with prostate cancer