Boosting the Photoelectrochemical Performance of Au/ZnO Nanorods by Co-Occurring Gradient Doping and Surface Plasmon Modification
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RP/CPS/2022/007
Ministry of Education Youth and Sports
LTT20010
Ministry of Education Youth and Sports
PubMed
36613884
PubMed Central
PMC9820687
DOI
10.3390/ijms24010443
PII: ijms24010443
Knihovny.cz E-zdroje
- Klíčová slova
- Au nanoparticles, ZnO nanorods, gradient doping, photoelectrochemical, surface plasmon effect,
- MeSH
- kovové nanočástice * MeSH
- nanostruktury * MeSH
- nanotrubičky * MeSH
- oxid zinečnatý * MeSH
- zlato MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid zinečnatý * MeSH
- zlato MeSH
Band bending modification of metal/semiconductor hybrid nanostructures requires low-cost and effective designs in photoelectrochemical (PEC) water splitting. To this end, it is evinced that gradient doping of Au nanoparticles (NPs) inwards the ZnO nanorods (NRs) through thermal treatment facilitated faster transport of the photo-induced charge carriers. Systematic PEC measurements show that the resulting gradient Au-doped ZnO NRs yielded a photocurrent density of 0.009 mA/cm2 at 1.1 V (vs. NHE), which is 2.5-fold and 8-fold improved compared to those of Au-sensitized ZnO and the as-prepared ZnO NRs, respectively. The IPCE and ABPE efficiency tests confirmed the boosted photoresponse of gradient Au-incorporated ZnO NRs, particularly in the visible spectrum due to the synergistic surface plasmonic effect of Au NPs. A gradient Au dopant profile promoted the separation and transfer of the photo-induced charge carriers at the electrolyte interface via more upward band bending according to the elaborated electrochemical impedance spectroscopy and Kelvin probe force microscopy analyses. Therefore, this research presents an economical and facile strategy for preparing gradient plasmonic noble NP-incorporated semiconductor NRs, which have excellent potential in energy conversion and storage technologies.
Zobrazit více v PubMed
Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238:37–38. doi: 10.1038/238037a0. PubMed DOI
Pan J.B., Shen S., Chen L., Au C.T., Yin S.F. Core–Shell Photoanodes for Photoelectrochemical Water Oxidation. Adv. Funct. Mater. 2021;31:2104269. doi: 10.1002/adfm.202104269. DOI
Yang Y., Niu S., Han D., Liu T., Wang G., Li Y. Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Adv. Energy Mater. 2017;7:1700555. doi: 10.1002/aenm.201700555. DOI
Ma M., Huang Y., Liu J., Liu K., Wang Z., Zhao C., Qu S., Wang Z. Engineering the Photoelectrochemical Behaviors of ZnO for Efficient Solar Water Splitting. J. Semicond. 2020;41:091702. doi: 10.1088/1674-4926/41/9/091702. DOI
Zhang X., Liu Y., Kang Z. 3D Branched ZnO Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces. 2014;6:4480–4489. doi: 10.1021/am500234v. PubMed DOI
Wang T., Lv R., Zhang P., Li C., Gong J. Au Nanoparticle Sensitized ZnO Nanopencil Arrays for Photoelectrochemical Water Splitting. Nanoscale. 2015;7:77–81. doi: 10.1039/C4NR03735A. PubMed DOI
Liu C., Dasgupta N.P., Yang P. Semiconductor Nanowires for Arti Fi Cial Photosynthesis. Chem. Mater. 2014;26:415–422. doi: 10.1021/cm4023198. DOI
Prasad M., Sharma V., Aher R., Rokade A., Ilaiyaraja P., Sudakar C., Jadkar S. Synergistic Effect of Ag Plasmon- and Reduced Graphene Oxide-Embedded ZnO Nanorod-Based Photoanodes for Enhanced Photoelectrochemical Activity. J. Mater. Sci. 2017;52:13572–13585. doi: 10.1007/s10853-017-1436-4. DOI
Liu J., He H., Xiao D., Yin S., Ji W., Jiang S., Luo D., Wang B., Liu Y. Recent Advances of Plasmonic Nanoparticles and Their Applications. Materials. 2018;11:1833. doi: 10.3390/ma11101833. PubMed DOI PMC
Azzazy H.M.E., Mansour M.M.H., Samir T.M., Franco R. Gold Nanoparticles in the Clinical Laboratory: Principles of Preparation and Applications. Clin. Chem. Lab. Med. 2012;50:193–209. doi: 10.1515/cclm.2011.732. PubMed DOI
Desai M.A., Sharma V., Prasad M., Gund G., Jadkar S., Sartale S.D. Photoelectrochemical Performance of MWCNT–Ag–ZnO Ternary Hybrid: A Study of Ag Loading and MWCNT Garnishing. J. Mater. Sci. 2021;56:8627–8642. doi: 10.1007/s10853-021-05821-5. DOI
Cheng C.W., Sie E.J., Liu B., Huan C.H.A., Sum T.C., Sun H.D., Fan H.J. Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles. Appl. Phys. Lett. 2010;96:3–5. doi: 10.1063/1.3323091. DOI
Tung R.T. Recent Advances in Schottky Barrier Concepts. Mater. Sci. Eng. R Rep. 2001;35:1–138. doi: 10.1016/S0927-796X(01)00037-7. DOI
Feng F., Li C., Jian J., Li F., Xu Y., Wang H., Jia L. Gradient Ti-Doping in Hematite Photoanodes for Enhanced Photoelectrochemical Performance. J. Power Sources. 2020;449:227473. doi: 10.1016/j.jpowsour.2019.227473. DOI
Abdi F.F., Han L., Smets A.H.M., Zeman M., Dam B., Van De Krol R. Efficient Solar Water Splitting by Enhanced Charge Separation in a Bismuth Vanadate-Silicon Tandem Photoelectrode. Nat. Commun. 2013;4:2195. doi: 10.1038/ncomms3195. PubMed DOI
Yu X., Yu X., Zhang J., Pan H. Gradient Al-Doped ZnO Multi-Buffer Layers: Effect on the Photovoltaic Properties of Organic Solar Cells. Mater. Lett. 2015;161:624–627. doi: 10.1016/j.matlet.2015.09.017. DOI
Rasouli F., Rouhollahi A., Ghahramanifard F. Gradient Doping of Copper in ZnO Nanorod Photoanode by Electrodeposition for Enhanced Charge Separation in Photoelectrochemical Water Splitting. Superlattices Microstruct. 2019;125:177–189. doi: 10.1016/j.spmi.2018.08.026. DOI
Domingues R.P., Rodrigues M.S., Proença M., Costa D., Alves E., Barradas N.P., Oliveira F.J., Silva R.F., Borges J., Vaz F. Thin Films Composed of Au Nanoparticles Embedded in AlN: Influence of Metal Concentration and Thermal Annealing on the LSPR Band. Vacuum. 2018;157:414–421. doi: 10.1016/j.vacuum.2018.09.013. DOI
Borges J., Buljan M., Sancho-Parramon J., Bogdanovic-Radovic I., Siketic Z., Scherer T., Kübel C., Bernstorff S., Cavaleiro A., Vaz F., et al. Evolution of the Surface Plasmon Resonance of Au:TiO2 Nanocomposite Thin Films with Annealing Temperature. J. Nanoparticle Res. 2014;16:2790. doi: 10.1007/s11051-014-2790-7. DOI
Zhang W., Liu Y., Zhou D., Wen J., Zheng L., Liang W., Yang F. Diffusion Kinetics of Gold in TiO2 Nanotube Arrays for Formation of Au@TiO2 Nanotube Arrays. RSC Adv. 2016;6:48580–48588. doi: 10.1039/C6RA08801E. DOI
Lee Y., Kim S., Jeong S.Y., Seo S., Kim C., Yoon H., Jang H.W., Lee S. Surface-Modified Co-Doped ZnO Photoanode for Photoelectrochemical Oxidation of Glycerol. Catal. Today. 2019;359:43–49. doi: 10.1016/j.cattod.2019.06.065. DOI
Ouarez L., Chelouche A., Touam T., Mahiou R., Djouadi D., Potdevin A. Au-Doped ZnO Sol-Gel Thin Films: An Experimental Investigation on Physical and Photoluminescence Properties. J. Lumin. 2018;203:222–229. doi: 10.1016/j.jlumin.2018.06.049. DOI
Sahoo P., Sharma A., Padhan S., Udayabhanu G., Thangavel R. UV-Assisted Water Splitting of Stable Cl-Doped ZnO Nanorod Photoanodes Grown via Facile Sol-Gel Hydrothermal Technique for Enhanced Solar Energy Harvesting Applications. Sol. Energy. 2019;193:148–163. doi: 10.1016/j.solener.2019.09.045. DOI
Pereira-Silva P., Borges J., Rodrigues M.S., Oliveira J.C., Alves E., Barradas N.P., Dias J.P., Cavaleiro A., Vaz F. Nanocomposite Au-ZnO Thin Films: Influence of Gold Concentration and Thermal Annealing on the Microstructure and Plasmonic Response. Surf. Coatings Technol. 2020;385:125379. doi: 10.1016/j.surfcoat.2020.125379. DOI
Su T. Origin of Surface Potential in Undoped Zinc Oxide Films Revealed by Advanced Scanning Probe Microscopy Techniques. RSC Adv. 2017;7:42393–42397. doi: 10.1039/C7RA06117J. DOI
Salerno M., Dante S. Scanning Kelvin Probe Microscopy: Challenges and Perspectives towards Increased Application on Biomaterials and Biological Samples. Materials. 2018;11:951. doi: 10.3390/ma11060951. PubMed DOI PMC
Gutmann S., Conrad M., Wolak M.A., Beerbom M.M., Schlaf R. Work Function Measurements on Nano-Crystalline Zinc Oxide Surfaces. J. Appl. Phys. 2012;111:123710. doi: 10.1063/1.4729527. DOI
Ramgir N.S., Kaur M., Sharma P.K., Datta N., Kailasaganapathi S., Bhattacharya S., Debnath A.K., Aswal D.K., Gupta S.K. Ethanol Sensing Properties of Pure and Au Modified ZnO Nanowires. Sens. Actuators B Chem. 2013;187:313–318. doi: 10.1016/j.snb.2012.11.079. DOI
Bora T., Kyaw H.H., Sarkar S., Pal S.K., Dutta J. Highly Efficient ZnO/Au Schottky Barrier Dye-Sensitized Solar Cells: Role of Gold Nanoparticles on the Charge-Transfer Process. Beilstein J. Nanotechnol. 2011;2:681–690. doi: 10.3762/bjnano.2.73. PubMed DOI PMC
Bruno L., Strano V., Scuderi M., Franzò G., Priolo F., Mirabella S. Localized Energy Band Bending in Zno Nanorods Decorated with Au Nanoparticles. Nanomaterials. 2021;11:2718. doi: 10.3390/nano11102718. PubMed DOI PMC
Zhou H., Feng M., Feng M., Gong X., Zhang D., Zhou Y., Chen S. Gradient Doping of Sulfur in Sb2Se3 Nanowire Arrays as Photoelectrochemical Photocathode with a 2% Half-Cell Solar-to-Hydrogen Conversion Efficiency. Appl. Phys. Lett. 2020;116:113902. doi: 10.1063/1.5142582. DOI
Khan H.R., Akram B., Aamir M., Malik M.A., Tahir A.A., Choudhary M.A., Akhtar J. Fabrication of Ni2+ Incorporated ZnO Photoanode for Efficient Overall Water Splitting. Appl. Surf. Sci. 2019;490:302–308. doi: 10.1016/j.apsusc.2019.06.078. DOI
Mahala C., Sharma M.D., Basu M. Near-Field and Far-Field Plasmonic Effects of Gold Nanoparticles Decorated on ZnO Nanosheets for Enhanced Solar Water Splitting. ACS Appl. Nano Mater. 2020;3:1153–1165. doi: 10.1021/acsanm.9b01678. DOI
Perumal V., Hashim U., Gopinath S.C.B., Haarindraprasad R., Liu W.W., Poopalan P., Balakrishnan S.R., Thivina V., Ruslinda A.R. Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film. PLoS ONE. 2015;10:e0144964. doi: 10.1371/journal.pone.0144964. PubMed DOI PMC
Lakowicz J.R. Radiative Decay Engineering 5: Metal-Enhanced Fluorescence and Plasmon Emission. Anal. Biochem. 2005;337:171–194. doi: 10.1016/j.ab.2004.11.026. PubMed DOI PMC
Ruiz Peralta M.D.L., Pal U., Zeferino R.S. Photoluminescence (PL) Quenching and Enhanced Photocatalytic Activity of Au-Decorated ZnO Nanorods Fabricated through Microwave-Assisted Chemical Synthesis. ACS Appl. Mater. Interfaces. 2012;4:4807–4816. doi: 10.1021/am301155u. PubMed DOI
Perumal V., Hashim U., Gopinath S.C.B., Prasad H.R., Wei-Wen L., Balakrishnan S.R., Vijayakumar T., Rahim R.A. Characterization of Gold-Sputtered Zinc Oxide Nanorods—A Potential Hybrid Material. Nanoscale Res. Lett. 2016;11:31. doi: 10.1186/s11671-016-1245-8. PubMed DOI PMC
Zhu Q., Lu J., Wang Y., Qin F., Shi Z., Xu C. Burstein-Moss Effect Behind Au Surface Plasmon Enhanced Intrinsic Emission of ZnO Microdisks. Sci. Rep. 2016;6:36194. doi: 10.1038/srep36194. PubMed DOI PMC
Salvador P. Kinetic Approach to the Photocurrent Transients in Water Photoelectrolysis at N-TiO2 Electrodes. 1. Analysis of the Ratio of the Instantaneous to Steady-State Photocurrent. J. Phys. Chem. 1985;89:3863–3869. doi: 10.1021/j100264a019. DOI
Lan Y., Liu Z., Guo Z., Ruan M., Xin Y. Accelerating the Charge Separation of ZnFe2O4 Nanorods by Cu-Sn Ions Gradient Doping for Efficient Photoelectrochemical Water Splitting. J. Colloid Interface Sci. 2019;552:111–121. doi: 10.1016/j.jcis.2019.05.041. PubMed DOI
Luo Z., Li C., Liu S., Wang T., Gong J. Gradient Doping of Phosphorus in Fe2O3 Nanoarray Photoanodes for Enhanced Charge Separation. Chem. Sci. 2016;8:91–100. doi: 10.1039/C6SC03707K. PubMed DOI PMC
Zhang Z., Choi M., Baek M., Deng Z., Yong K. Corrosion-Assisted Self-Growth of Au-Decorated ZnO Corn Silks and Their Photoelectrochemical Enhancement. ACS Appl. Mater. Interfaces. 2017;9:3967–3976. doi: 10.1021/acsami.6b15026. PubMed DOI
Chiu Y.H., Der Chang K., Hsu Y.J. Plasmon-Mediated Charge Dynamics and Photoactivity Enhancement for Au-Decorated ZnO Nanocrystals. J. Mater. Chem. A. 2018;6:4286–4296. doi: 10.1039/C7TA08543E. DOI
Pu Y.C., Wang G., Der Chang K., Ling Y., Lin Y.K., Fitzmorris B.C., Liu C.M., Lu X., Tong Y., Zhang J.Z., et al. Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity across Entire UV-Visible Region for Photoelectrochemical Water Splitting. Nano Lett. 2013;13:3817–3823. doi: 10.1021/nl4018385. PubMed DOI
Liu Y., Chen Q., Chen Q., Cullen D.A., Xie Z., Lian T. Efficient Hot Electron Transfer from Small Au Nanoparticles. Nano Lett. 2020;20:4322–4329. doi: 10.1021/acs.nanolett.0c01050. PubMed DOI
Bueno-Alejo C.J., Graus J., Arenal R., Lafuente M., Bottega-Pergher B., Hueso J.L. Anisotropic Au-ZnO Photocatalyst for the Visible-Light Expanded Oxidation of n-Hexane. Catal. Today. 2021;362:97–103. doi: 10.1016/j.cattod.2020.03.063. DOI
Vimal K., Appa R.B.V. Chemically Modified Biopolymer as an Eco-Friendly Corrosion Inhibitor for Mild Steel in a Neutral Chloride Environment. New J. Chem. 2017;41:6278–6289. doi: 10.1039/c7nj00553a. DOI
Liu C., Li X., Su J., Guo L. Enhanced Charge Separation in Copper Incorporated BiVO4 with Gradient Doping Concentration Profile for Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy. 2016;41:12842–12851. doi: 10.1016/j.ijhydene.2016.06.068. DOI
Wang M., Ren F., Zhou J., Cai G., Cai L., Hu Y., Wang D., Liu Y., Guo L., Shen S. N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure. Sci. Rep. 2015;5:12925. doi: 10.1038/srep12925. PubMed DOI PMC
Wu M., Chen W.J., Shen Y.H., Huang F.Z., Li C.H., Li S.K. In Situ Growth of Matchlike ZnO/Au Plasmonic Heterostructure for Enhanced Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces. 2014;6:15052–15060. doi: 10.1021/am503044f. PubMed DOI
Singh S., Ruhela A., Rani S., Khanuja M., Sharma R. Concentration Specific and Tunable Photoresponse of Bismuth Vanadate Functionalized Hexagonal ZnO Nanocrystals Based Photoanodes for Photoelectrochemical Application. Solid State Sci. 2018;76:48–56. doi: 10.1016/j.solidstatesciences.2017.12.003. DOI
Yong X., Schoonen M.A.A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000;85:543–556. doi: 10.2138/am-2000-0416. DOI
Beranek R. Photoelectrochemical Methods for the Determination of the Band Edge Positions of TiO 2-Based Nanomaterials. Adv. Phys. Chem. 2011;2011:80–83. doi: 10.1155/2011/786759. DOI
Tarasatti S. International Union of Pure and Applied Chemistry Commission on Electrochemistry * the Absolute Electrode Potential: An Explanatory Note. Pure Appl. Chem. 1986;58:955–966. doi: 10.1351/pac198658070955. DOI
Johansson E., Boettcher S.W., O’Leary L.E., Poletayev A.D., Maldonado S., Brunschwig B.S., Lewis N.S. Control of the PH-Dependence of the Band Edges of Si(111) Surfaces Using Mixed Methyl/Allyl Monolayers. J. Phys. Chem. C. 2011;115:8594–8601. doi: 10.1021/jp109799e. DOI
Butler M.A., Ginley D.S. Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities. J. Electrochem. Soc. 1978;125:228–232. doi: 10.1149/1.2131419. DOI
Stevanović V., Lany S., Ginley D.S., Tumas W., Zunger A. Assessing Capability of Semiconductors to Split Water Using Ionization Potentials and Electron Affinities Only. Phys. Chem. Chem. Phys. 2014;16:3706–3714. doi: 10.1039/c3cp54589j. PubMed DOI
Fatehah M.O., Aziz H.A., Stoll S. Stability of ZnO Nanoparticles in Solution. Influence of PH, Dissolution, Aggregation and Disaggregation Effects. J. Colloid Sci. Biotechnol. 2014;3:75–84. doi: 10.1166/jcsb.2014.1072. DOI
Smith W.A., Sharp I.D., Strandwitz N.C., Bisquert J. Interfacial Band-Edge Energetics for Solar Fuels Production. Energy Environ. Sci. 2015;8:2851–2862. doi: 10.1039/C5EE01822F. DOI
Peljo P., Girault H.H. Electrochemical Potential Window of Battery Electrolytes: The HOMO-LUMO Misconception. Energy Environ. Sci. 2018;11:2306–2309. doi: 10.1039/C8EE01286E. DOI
Shi X., Cai L., Ma M., Zheng X., Park J.H. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting. ChemSusChem. 2015;8:3192–3203. doi: 10.1002/cssc.201500075. PubMed DOI
Lin C.J., Lu Y.T., Hsieh C.H., Chien S.H. Surface Modification of Highly Ordered TiO2 Nanotube Arrays for Efficient Photoelectrocatalytic Water Splitting. Appl. Phys. Lett. 2009;94:113102. doi: 10.1063/1.3099338. DOI
Albery W.J., Bartlett P.N., Wilde C.P., Darwent J.R. A General Model for Dispersed Kinetics in Heterogeneous Systems. J. Am. Chem. Soc. 1985;107:1854–1858. doi: 10.1021/ja00293a008. DOI
Tafalla D., Salvador P., Benito R.M. Kinetic Approach to the Photocurrent Transients in Water Photoelectrolysis at n-TiO2 Electrodes: II. Analysis of the Photocurrent-Time Dependence. J. Electrochem. Soc. 1990;137:1810–1815. doi: 10.1149/1.2086809. DOI
Hagfeldt A., Lindström H., Södergren S., Lindquist S.E. Photoelectrochemical Studies of Colloidal TiO2 Films: The Effect of Oxygen Studied by Photocurrent Transients. J. Electroanal. Chem. 1995;381:39–46. doi: 10.1016/0022-0728(94)03622-A. DOI
Liu C.F., Lu Y.J., Hu C.C. Effects of Anions and PH on the Stability of ZnO Nanorods for Photoelectrochemical Water Splitting. ACS Omega. 2018;3:3429–3439. doi: 10.1021/acsomega.8b00214. PubMed DOI PMC