Boosting the Photoelectrochemical Performance of Au/ZnO Nanorods by Co-Occurring Gradient Doping and Surface Plasmon Modification

. 2022 Dec 27 ; 24 (1) : . [epub] 20221227

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36613884

Grantová podpora
RP/CPS/2022/007 Ministry of Education Youth and Sports
LTT20010 Ministry of Education Youth and Sports

Band bending modification of metal/semiconductor hybrid nanostructures requires low-cost and effective designs in photoelectrochemical (PEC) water splitting. To this end, it is evinced that gradient doping of Au nanoparticles (NPs) inwards the ZnO nanorods (NRs) through thermal treatment facilitated faster transport of the photo-induced charge carriers. Systematic PEC measurements show that the resulting gradient Au-doped ZnO NRs yielded a photocurrent density of 0.009 mA/cm2 at 1.1 V (vs. NHE), which is 2.5-fold and 8-fold improved compared to those of Au-sensitized ZnO and the as-prepared ZnO NRs, respectively. The IPCE and ABPE efficiency tests confirmed the boosted photoresponse of gradient Au-incorporated ZnO NRs, particularly in the visible spectrum due to the synergistic surface plasmonic effect of Au NPs. A gradient Au dopant profile promoted the separation and transfer of the photo-induced charge carriers at the electrolyte interface via more upward band bending according to the elaborated electrochemical impedance spectroscopy and Kelvin probe force microscopy analyses. Therefore, this research presents an economical and facile strategy for preparing gradient plasmonic noble NP-incorporated semiconductor NRs, which have excellent potential in energy conversion and storage technologies.

Zobrazit více v PubMed

Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238:37–38. doi: 10.1038/238037a0. PubMed DOI

Pan J.B., Shen S., Chen L., Au C.T., Yin S.F. Core–Shell Photoanodes for Photoelectrochemical Water Oxidation. Adv. Funct. Mater. 2021;31:2104269. doi: 10.1002/adfm.202104269. DOI

Yang Y., Niu S., Han D., Liu T., Wang G., Li Y. Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Adv. Energy Mater. 2017;7:1700555. doi: 10.1002/aenm.201700555. DOI

Ma M., Huang Y., Liu J., Liu K., Wang Z., Zhao C., Qu S., Wang Z. Engineering the Photoelectrochemical Behaviors of ZnO for Efficient Solar Water Splitting. J. Semicond. 2020;41:091702. doi: 10.1088/1674-4926/41/9/091702. DOI

Zhang X., Liu Y., Kang Z. 3D Branched ZnO Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces. 2014;6:4480–4489. doi: 10.1021/am500234v. PubMed DOI

Wang T., Lv R., Zhang P., Li C., Gong J. Au Nanoparticle Sensitized ZnO Nanopencil Arrays for Photoelectrochemical Water Splitting. Nanoscale. 2015;7:77–81. doi: 10.1039/C4NR03735A. PubMed DOI

Liu C., Dasgupta N.P., Yang P. Semiconductor Nanowires for Arti Fi Cial Photosynthesis. Chem. Mater. 2014;26:415–422. doi: 10.1021/cm4023198. DOI

Prasad M., Sharma V., Aher R., Rokade A., Ilaiyaraja P., Sudakar C., Jadkar S. Synergistic Effect of Ag Plasmon- and Reduced Graphene Oxide-Embedded ZnO Nanorod-Based Photoanodes for Enhanced Photoelectrochemical Activity. J. Mater. Sci. 2017;52:13572–13585. doi: 10.1007/s10853-017-1436-4. DOI

Liu J., He H., Xiao D., Yin S., Ji W., Jiang S., Luo D., Wang B., Liu Y. Recent Advances of Plasmonic Nanoparticles and Their Applications. Materials. 2018;11:1833. doi: 10.3390/ma11101833. PubMed DOI PMC

Azzazy H.M.E., Mansour M.M.H., Samir T.M., Franco R. Gold Nanoparticles in the Clinical Laboratory: Principles of Preparation and Applications. Clin. Chem. Lab. Med. 2012;50:193–209. doi: 10.1515/cclm.2011.732. PubMed DOI

Desai M.A., Sharma V., Prasad M., Gund G., Jadkar S., Sartale S.D. Photoelectrochemical Performance of MWCNT–Ag–ZnO Ternary Hybrid: A Study of Ag Loading and MWCNT Garnishing. J. Mater. Sci. 2021;56:8627–8642. doi: 10.1007/s10853-021-05821-5. DOI

Cheng C.W., Sie E.J., Liu B., Huan C.H.A., Sum T.C., Sun H.D., Fan H.J. Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles. Appl. Phys. Lett. 2010;96:3–5. doi: 10.1063/1.3323091. DOI

Tung R.T. Recent Advances in Schottky Barrier Concepts. Mater. Sci. Eng. R Rep. 2001;35:1–138. doi: 10.1016/S0927-796X(01)00037-7. DOI

Feng F., Li C., Jian J., Li F., Xu Y., Wang H., Jia L. Gradient Ti-Doping in Hematite Photoanodes for Enhanced Photoelectrochemical Performance. J. Power Sources. 2020;449:227473. doi: 10.1016/j.jpowsour.2019.227473. DOI

Abdi F.F., Han L., Smets A.H.M., Zeman M., Dam B., Van De Krol R. Efficient Solar Water Splitting by Enhanced Charge Separation in a Bismuth Vanadate-Silicon Tandem Photoelectrode. Nat. Commun. 2013;4:2195. doi: 10.1038/ncomms3195. PubMed DOI

Yu X., Yu X., Zhang J., Pan H. Gradient Al-Doped ZnO Multi-Buffer Layers: Effect on the Photovoltaic Properties of Organic Solar Cells. Mater. Lett. 2015;161:624–627. doi: 10.1016/j.matlet.2015.09.017. DOI

Rasouli F., Rouhollahi A., Ghahramanifard F. Gradient Doping of Copper in ZnO Nanorod Photoanode by Electrodeposition for Enhanced Charge Separation in Photoelectrochemical Water Splitting. Superlattices Microstruct. 2019;125:177–189. doi: 10.1016/j.spmi.2018.08.026. DOI

Domingues R.P., Rodrigues M.S., Proença M., Costa D., Alves E., Barradas N.P., Oliveira F.J., Silva R.F., Borges J., Vaz F. Thin Films Composed of Au Nanoparticles Embedded in AlN: Influence of Metal Concentration and Thermal Annealing on the LSPR Band. Vacuum. 2018;157:414–421. doi: 10.1016/j.vacuum.2018.09.013. DOI

Borges J., Buljan M., Sancho-Parramon J., Bogdanovic-Radovic I., Siketic Z., Scherer T., Kübel C., Bernstorff S., Cavaleiro A., Vaz F., et al. Evolution of the Surface Plasmon Resonance of Au:TiO2 Nanocomposite Thin Films with Annealing Temperature. J. Nanoparticle Res. 2014;16:2790. doi: 10.1007/s11051-014-2790-7. DOI

Zhang W., Liu Y., Zhou D., Wen J., Zheng L., Liang W., Yang F. Diffusion Kinetics of Gold in TiO2 Nanotube Arrays for Formation of Au@TiO2 Nanotube Arrays. RSC Adv. 2016;6:48580–48588. doi: 10.1039/C6RA08801E. DOI

Lee Y., Kim S., Jeong S.Y., Seo S., Kim C., Yoon H., Jang H.W., Lee S. Surface-Modified Co-Doped ZnO Photoanode for Photoelectrochemical Oxidation of Glycerol. Catal. Today. 2019;359:43–49. doi: 10.1016/j.cattod.2019.06.065. DOI

Ouarez L., Chelouche A., Touam T., Mahiou R., Djouadi D., Potdevin A. Au-Doped ZnO Sol-Gel Thin Films: An Experimental Investigation on Physical and Photoluminescence Properties. J. Lumin. 2018;203:222–229. doi: 10.1016/j.jlumin.2018.06.049. DOI

Sahoo P., Sharma A., Padhan S., Udayabhanu G., Thangavel R. UV-Assisted Water Splitting of Stable Cl-Doped ZnO Nanorod Photoanodes Grown via Facile Sol-Gel Hydrothermal Technique for Enhanced Solar Energy Harvesting Applications. Sol. Energy. 2019;193:148–163. doi: 10.1016/j.solener.2019.09.045. DOI

Pereira-Silva P., Borges J., Rodrigues M.S., Oliveira J.C., Alves E., Barradas N.P., Dias J.P., Cavaleiro A., Vaz F. Nanocomposite Au-ZnO Thin Films: Influence of Gold Concentration and Thermal Annealing on the Microstructure and Plasmonic Response. Surf. Coatings Technol. 2020;385:125379. doi: 10.1016/j.surfcoat.2020.125379. DOI

Su T. Origin of Surface Potential in Undoped Zinc Oxide Films Revealed by Advanced Scanning Probe Microscopy Techniques. RSC Adv. 2017;7:42393–42397. doi: 10.1039/C7RA06117J. DOI

Salerno M., Dante S. Scanning Kelvin Probe Microscopy: Challenges and Perspectives towards Increased Application on Biomaterials and Biological Samples. Materials. 2018;11:951. doi: 10.3390/ma11060951. PubMed DOI PMC

Gutmann S., Conrad M., Wolak M.A., Beerbom M.M., Schlaf R. Work Function Measurements on Nano-Crystalline Zinc Oxide Surfaces. J. Appl. Phys. 2012;111:123710. doi: 10.1063/1.4729527. DOI

Ramgir N.S., Kaur M., Sharma P.K., Datta N., Kailasaganapathi S., Bhattacharya S., Debnath A.K., Aswal D.K., Gupta S.K. Ethanol Sensing Properties of Pure and Au Modified ZnO Nanowires. Sens. Actuators B Chem. 2013;187:313–318. doi: 10.1016/j.snb.2012.11.079. DOI

Bora T., Kyaw H.H., Sarkar S., Pal S.K., Dutta J. Highly Efficient ZnO/Au Schottky Barrier Dye-Sensitized Solar Cells: Role of Gold Nanoparticles on the Charge-Transfer Process. Beilstein J. Nanotechnol. 2011;2:681–690. doi: 10.3762/bjnano.2.73. PubMed DOI PMC

Bruno L., Strano V., Scuderi M., Franzò G., Priolo F., Mirabella S. Localized Energy Band Bending in Zno Nanorods Decorated with Au Nanoparticles. Nanomaterials. 2021;11:2718. doi: 10.3390/nano11102718. PubMed DOI PMC

Zhou H., Feng M., Feng M., Gong X., Zhang D., Zhou Y., Chen S. Gradient Doping of Sulfur in Sb2Se3 Nanowire Arrays as Photoelectrochemical Photocathode with a 2% Half-Cell Solar-to-Hydrogen Conversion Efficiency. Appl. Phys. Lett. 2020;116:113902. doi: 10.1063/1.5142582. DOI

Khan H.R., Akram B., Aamir M., Malik M.A., Tahir A.A., Choudhary M.A., Akhtar J. Fabrication of Ni2+ Incorporated ZnO Photoanode for Efficient Overall Water Splitting. Appl. Surf. Sci. 2019;490:302–308. doi: 10.1016/j.apsusc.2019.06.078. DOI

Mahala C., Sharma M.D., Basu M. Near-Field and Far-Field Plasmonic Effects of Gold Nanoparticles Decorated on ZnO Nanosheets for Enhanced Solar Water Splitting. ACS Appl. Nano Mater. 2020;3:1153–1165. doi: 10.1021/acsanm.9b01678. DOI

Perumal V., Hashim U., Gopinath S.C.B., Haarindraprasad R., Liu W.W., Poopalan P., Balakrishnan S.R., Thivina V., Ruslinda A.R. Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film. PLoS ONE. 2015;10:e0144964. doi: 10.1371/journal.pone.0144964. PubMed DOI PMC

Lakowicz J.R. Radiative Decay Engineering 5: Metal-Enhanced Fluorescence and Plasmon Emission. Anal. Biochem. 2005;337:171–194. doi: 10.1016/j.ab.2004.11.026. PubMed DOI PMC

Ruiz Peralta M.D.L., Pal U., Zeferino R.S. Photoluminescence (PL) Quenching and Enhanced Photocatalytic Activity of Au-Decorated ZnO Nanorods Fabricated through Microwave-Assisted Chemical Synthesis. ACS Appl. Mater. Interfaces. 2012;4:4807–4816. doi: 10.1021/am301155u. PubMed DOI

Perumal V., Hashim U., Gopinath S.C.B., Prasad H.R., Wei-Wen L., Balakrishnan S.R., Vijayakumar T., Rahim R.A. Characterization of Gold-Sputtered Zinc Oxide Nanorods—A Potential Hybrid Material. Nanoscale Res. Lett. 2016;11:31. doi: 10.1186/s11671-016-1245-8. PubMed DOI PMC

Zhu Q., Lu J., Wang Y., Qin F., Shi Z., Xu C. Burstein-Moss Effect Behind Au Surface Plasmon Enhanced Intrinsic Emission of ZnO Microdisks. Sci. Rep. 2016;6:36194. doi: 10.1038/srep36194. PubMed DOI PMC

Salvador P. Kinetic Approach to the Photocurrent Transients in Water Photoelectrolysis at N-TiO2 Electrodes. 1. Analysis of the Ratio of the Instantaneous to Steady-State Photocurrent. J. Phys. Chem. 1985;89:3863–3869. doi: 10.1021/j100264a019. DOI

Lan Y., Liu Z., Guo Z., Ruan M., Xin Y. Accelerating the Charge Separation of ZnFe2O4 Nanorods by Cu-Sn Ions Gradient Doping for Efficient Photoelectrochemical Water Splitting. J. Colloid Interface Sci. 2019;552:111–121. doi: 10.1016/j.jcis.2019.05.041. PubMed DOI

Luo Z., Li C., Liu S., Wang T., Gong J. Gradient Doping of Phosphorus in Fe2O3 Nanoarray Photoanodes for Enhanced Charge Separation. Chem. Sci. 2016;8:91–100. doi: 10.1039/C6SC03707K. PubMed DOI PMC

Zhang Z., Choi M., Baek M., Deng Z., Yong K. Corrosion-Assisted Self-Growth of Au-Decorated ZnO Corn Silks and Their Photoelectrochemical Enhancement. ACS Appl. Mater. Interfaces. 2017;9:3967–3976. doi: 10.1021/acsami.6b15026. PubMed DOI

Chiu Y.H., Der Chang K., Hsu Y.J. Plasmon-Mediated Charge Dynamics and Photoactivity Enhancement for Au-Decorated ZnO Nanocrystals. J. Mater. Chem. A. 2018;6:4286–4296. doi: 10.1039/C7TA08543E. DOI

Pu Y.C., Wang G., Der Chang K., Ling Y., Lin Y.K., Fitzmorris B.C., Liu C.M., Lu X., Tong Y., Zhang J.Z., et al. Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity across Entire UV-Visible Region for Photoelectrochemical Water Splitting. Nano Lett. 2013;13:3817–3823. doi: 10.1021/nl4018385. PubMed DOI

Liu Y., Chen Q., Chen Q., Cullen D.A., Xie Z., Lian T. Efficient Hot Electron Transfer from Small Au Nanoparticles. Nano Lett. 2020;20:4322–4329. doi: 10.1021/acs.nanolett.0c01050. PubMed DOI

Bueno-Alejo C.J., Graus J., Arenal R., Lafuente M., Bottega-Pergher B., Hueso J.L. Anisotropic Au-ZnO Photocatalyst for the Visible-Light Expanded Oxidation of n-Hexane. Catal. Today. 2021;362:97–103. doi: 10.1016/j.cattod.2020.03.063. DOI

Vimal K., Appa R.B.V. Chemically Modified Biopolymer as an Eco-Friendly Corrosion Inhibitor for Mild Steel in a Neutral Chloride Environment. New J. Chem. 2017;41:6278–6289. doi: 10.1039/c7nj00553a. DOI

Liu C., Li X., Su J., Guo L. Enhanced Charge Separation in Copper Incorporated BiVO4 with Gradient Doping Concentration Profile for Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy. 2016;41:12842–12851. doi: 10.1016/j.ijhydene.2016.06.068. DOI

Wang M., Ren F., Zhou J., Cai G., Cai L., Hu Y., Wang D., Liu Y., Guo L., Shen S. N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure. Sci. Rep. 2015;5:12925. doi: 10.1038/srep12925. PubMed DOI PMC

Wu M., Chen W.J., Shen Y.H., Huang F.Z., Li C.H., Li S.K. In Situ Growth of Matchlike ZnO/Au Plasmonic Heterostructure for Enhanced Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces. 2014;6:15052–15060. doi: 10.1021/am503044f. PubMed DOI

Singh S., Ruhela A., Rani S., Khanuja M., Sharma R. Concentration Specific and Tunable Photoresponse of Bismuth Vanadate Functionalized Hexagonal ZnO Nanocrystals Based Photoanodes for Photoelectrochemical Application. Solid State Sci. 2018;76:48–56. doi: 10.1016/j.solidstatesciences.2017.12.003. DOI

Yong X., Schoonen M.A.A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000;85:543–556. doi: 10.2138/am-2000-0416. DOI

Beranek R. Photoelectrochemical Methods for the Determination of the Band Edge Positions of TiO 2-Based Nanomaterials. Adv. Phys. Chem. 2011;2011:80–83. doi: 10.1155/2011/786759. DOI

Tarasatti S. International Union of Pure and Applied Chemistry Commission on Electrochemistry * the Absolute Electrode Potential: An Explanatory Note. Pure Appl. Chem. 1986;58:955–966. doi: 10.1351/pac198658070955. DOI

Johansson E., Boettcher S.W., O’Leary L.E., Poletayev A.D., Maldonado S., Brunschwig B.S., Lewis N.S. Control of the PH-Dependence of the Band Edges of Si(111) Surfaces Using Mixed Methyl/Allyl Monolayers. J. Phys. Chem. C. 2011;115:8594–8601. doi: 10.1021/jp109799e. DOI

Butler M.A., Ginley D.S. Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities. J. Electrochem. Soc. 1978;125:228–232. doi: 10.1149/1.2131419. DOI

Stevanović V., Lany S., Ginley D.S., Tumas W., Zunger A. Assessing Capability of Semiconductors to Split Water Using Ionization Potentials and Electron Affinities Only. Phys. Chem. Chem. Phys. 2014;16:3706–3714. doi: 10.1039/c3cp54589j. PubMed DOI

Fatehah M.O., Aziz H.A., Stoll S. Stability of ZnO Nanoparticles in Solution. Influence of PH, Dissolution, Aggregation and Disaggregation Effects. J. Colloid Sci. Biotechnol. 2014;3:75–84. doi: 10.1166/jcsb.2014.1072. DOI

Smith W.A., Sharp I.D., Strandwitz N.C., Bisquert J. Interfacial Band-Edge Energetics for Solar Fuels Production. Energy Environ. Sci. 2015;8:2851–2862. doi: 10.1039/C5EE01822F. DOI

Peljo P., Girault H.H. Electrochemical Potential Window of Battery Electrolytes: The HOMO-LUMO Misconception. Energy Environ. Sci. 2018;11:2306–2309. doi: 10.1039/C8EE01286E. DOI

Shi X., Cai L., Ma M., Zheng X., Park J.H. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting. ChemSusChem. 2015;8:3192–3203. doi: 10.1002/cssc.201500075. PubMed DOI

Lin C.J., Lu Y.T., Hsieh C.H., Chien S.H. Surface Modification of Highly Ordered TiO2 Nanotube Arrays for Efficient Photoelectrocatalytic Water Splitting. Appl. Phys. Lett. 2009;94:113102. doi: 10.1063/1.3099338. DOI

Albery W.J., Bartlett P.N., Wilde C.P., Darwent J.R. A General Model for Dispersed Kinetics in Heterogeneous Systems. J. Am. Chem. Soc. 1985;107:1854–1858. doi: 10.1021/ja00293a008. DOI

Tafalla D., Salvador P., Benito R.M. Kinetic Approach to the Photocurrent Transients in Water Photoelectrolysis at n-TiO2 Electrodes: II. Analysis of the Photocurrent-Time Dependence. J. Electrochem. Soc. 1990;137:1810–1815. doi: 10.1149/1.2086809. DOI

Hagfeldt A., Lindström H., Södergren S., Lindquist S.E. Photoelectrochemical Studies of Colloidal TiO2 Films: The Effect of Oxygen Studied by Photocurrent Transients. J. Electroanal. Chem. 1995;381:39–46. doi: 10.1016/0022-0728(94)03622-A. DOI

Liu C.F., Lu Y.J., Hu C.C. Effects of Anions and PH on the Stability of ZnO Nanorods for Photoelectrochemical Water Splitting. ACS Omega. 2018;3:3429–3439. doi: 10.1021/acsomega.8b00214. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...