Sustainable Strategy for Algae Biomass Waste Management via Development of Novel Bio-Based Thermoplastic Polyurethane Elastomers Composites

. 2023 Jan 03 ; 28 (1) : . [epub] 20230103

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36615628

This work concerns the waste management method of algae biomass wastes (ABW). For this purpose, we prepared bio-based thermoplastic polyurethane elastomer (bio-TPU) composites. Algae biomass wastes are derived from algal oil extraction of Chlorella vulgaris and from biomass of Enteromorpha and Zostera marina. ABWs were used in the bio-TPUs composites as a filler in the quantity of 1, 5, 10, and 15 wt.%. The bio-based composites were prepared via the in situ method. Polymer matrix was synthesized from a bio-based polyester polyol, diisocyanate mixture (composed of partially bio-based and synthetic diisocyanates), and bio-based 1,3 propanediol. In this study, the chemical structure, morphology, thermal and mechanical properties of prepared composites were investigated. Based on the conducted research, it was determined that the type and the content of algae waste influence the properties of the bio-based polyurethane matrix. In general, the addition of algae biomass wastes led to obtain materials characterized by good mechanical properties and noticeable positive ecological impact by increasing the total amount of green components in prepared bio-TPU-based composites from 68.7% to 73.54%.

Zobrazit více v PubMed

Plastics—The Facts 2021, An Anal. Eur. Plast. Prod. Demand Waste Data. 2021. [(accessed on 15 November 2022)]. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/

Chamas A., Moon H., Zheng J., Qiu Y., Tabassum T., Jang J.H., Abu-Omar M., Scott S.L., Suh S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020;8:3494–3511. doi: 10.1021/acssuschemeng.9b06635. DOI

Abbas T., Issa M., Ilinca A. Biomass Cogeneration Technologies: A Review. J. Sustain. Bioenergy Syst. 2020;10:101001. doi: 10.4236/jsbs.2020.101001. DOI

Azari Marhabi A., Arasteh A., Paydar M.M. Sustainable energy development under uncertainty based on the real options theory approach. Int. J. Environ. Sci. Technol. 2022;19:5897–5910. doi: 10.1007/s13762-021-03763-8. DOI

Zhang K., Hamidian A., Tubić A., Zhang Y., Fang J., Wu C., Lam P. Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut. 2021;274:116554. doi: 10.1016/j.envpol.2021.116554. PubMed DOI

Park Y.K., Lee J. Achievements in the production of bioplastics from microalgae. Phytochem. Rev. 2022;8:1–19. doi: 10.1007/s11101-021-09788-8. DOI

Koçer A.T., Özçimen D. Investigation of the biogas production potential from algal wastes. Waste Manag. Res. 2018;36:1100–1105. doi: 10.1177/0734242X18798447. PubMed DOI

Han W., Clarke W., Pratt S. Composting of waste algae: A review. Waste Manag. 2014;34:1148–1155. doi: 10.1016/j.wasman.2014.01.019. PubMed DOI

Li R., Zhang T., Zhong H., Song W., Zhou Y., Yin X. Bioadsorbents from algae residues for heavy metal ions adsorption: Chemical modification, adsorption behaviour and mechanism. Environ. Technol. 2021;42:3132–3143. doi: 10.1080/09593330.2020.1723711. PubMed DOI

Wang L., Liu J., Filipiak M., Mungunkhuyag K., Jedynak P., Burczyk J., Fu P., Malec P. Fast and efficient cadmium biosorption by Chlorella vulgaris K-01 strain: The role of cell walls in metal sequestration. Algal Res. 2021;60:102497. doi: 10.1016/j.algal.2021.102497. DOI

Chia W.Y., Tang D.Y.Y., Khoo K.S., Lup A.N.K., Chew K.W. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environ. Sci. Ecotechnol. 2020;4:100065. doi: 10.1016/j.ese.2020.100065. PubMed DOI PMC

Cinar S.O., Chong Z.K., Kucuker M.A., Wieczorek N., Cengiz U., Kuchta K. Bioplastic production from microalgae: A review. Int. J. Environ. Res. Public Health. 2020;17:3842. doi: 10.3390/ijerph17113842. PubMed DOI PMC

Rahman A., Miller C.D. Microalgae as a Source of Bioplastics. Elsevier B.V.; Amsterdam, The Netherlands: 2017.

Zia F., Barikani M., Jabeen F., Zuber M., Zia K.M., Khosa M.K., Khatri A. Algae-Based Polyurethane Blends and Composites. Elsevier Inc.; Amsterdam, The Netherlands: 2017.

Drobny J.G. Handbook of Thermoplastic Elastomers. 2nd ed. William Andrew; Norwich, NY, USA: 2014.

Szycher M. Szycher’s Handbook of Polyurethanes. 2nd ed. CRC Press; Boca Raton, FL, USA: 2012.

Syed M.A., Al Sawafi M., Shaik F., Nayeemuddin M. Polyurethane green composites: Synthesize, characterization and treatment of boron present in the oil produced water. Int. J. Eng. Res. Technol. 2020;13:1866–1873. doi: 10.37624/IJERT/13.8.2020.1866-1873. DOI

Syed M.A., Al-Shukaili Z.S., Shaik F., Mohammed N. Development and Characterization of Algae Based Semi-interpenetrating Polymer Network Composite. Arab. J. Sci. Eng. 2021;47:5661–5669. doi: 10.1007/s13369-021-05567-x. DOI

Furtwengler P., Avérous L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym. Chem. 2018;9:4258–4287. doi: 10.1039/C8PY00827B. DOI

Phung Hai T.A., Neelakantan N., Tessman M., Sherman S.D., Griffin G., Pomeroy R., Mayfield S.P., Burkart M.D. Flexible polyurethanes, renewable fuels, and flavorings from a microalgae oil waste stream. Green Chem. 2020;22:3088–3094. doi: 10.1039/D0GC00852D. DOI

Petrović Z.S., Wan X., Bilić O., Zlatanić A., Hong J., Javni I., Ionescu M., Milić J., Degruson D. Polyols and polyurethanes from crude algal oil. JAOCS J. Am. Oil Chem. Soc. 2013;90:1073–1078. doi: 10.1007/s11746-013-2245-9. DOI

Kosmela P., Gosz K., Kazimierski P., Hejna A., Haponiuk J.T., Piszczyk Ł. Chemical structures, rheological and physical properties of biopolyols prepared via solvothermal liquefaction of Enteromorpha and Zostera marina biomass. Cellulose. 2019;26:5893–5912. doi: 10.1007/s10570-019-02540-8. DOI

Olejnik A., Kosmela P., Piszczyk Ł. Enhancement of PUR/PIR foam thermal stability after addition of Zostera marina biomass component investigated via thermal analysis and isoconversional kinetics. J. Polym. Sci. 2021;59:1095–1108. doi: 10.1002/pol.20210085. DOI

Yalcin Duygu D., Baykal Özer T., Udoh A.U., Akbulut A., Açikgöz Erkaya İ., Yildiz K., Guler D. Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African J. Biotechnol. 2012;11:3817–3824. doi: 10.5897/ajb11.1863. DOI

Głowińska E., Wolak W., Datta J. Eco-friendly Route for Thermoplastic Polyurethane Elastomers with Bio-based Hard Segments Composed of Bio-glycol and Mixtures of Aromatic–Aliphatic and Aliphatic–Aliphatic Diisocyanate. J. Polym. Environ. 2021;29:2140–2149. doi: 10.1007/s10924-020-01992-5. PubMed DOI PMC

Niemczyk A., Piegat A., Sonseca Olalla Á., El Fray M. New approach to evaluate microphase separation in segmented polyurethanes containing carbonate macrodiol. Eur. Polym. J. 2017;93:182–191. doi: 10.1016/j.eurpolymj.2017.05.046. DOI

Barrioni B.R., De Carvalho S.M., Oréfice R.L., De Oliveira A.A.R., Pereira M.D.M. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Mater. Sci. Eng. C. 2015;52:22–30. doi: 10.1016/j.msec.2015.03.027. PubMed DOI

Głowińska E., Kasprzyk P., Datta J. The green approach to the synthesis of bio-based thermoplastic polyurethane elastomers with partially bio-based hard blocks. Materials. 2021;14:2334. doi: 10.3390/ma14092334. PubMed DOI PMC

Głowińska E., Kasprzyk P., Datta J. Segmented bio-based polyurethane composites containing powdered cellulose obtained from novel bio-based diisocyanate mixtures. Wood Sci. Technol. 2021;55:1673–1691. doi: 10.1007/s00226-021-01331-4. DOI

Ma Y., Wang J., Zhang Y. TG-FTIR study on pyrolysis of Enteromorpha prolifera. Biomass Convers. Biorefinery. 2018;8:151–157. doi: 10.1007/s13399-016-0234-6. DOI

Qing X., Xiaoqian M., Zhaosheng Y., Zilin C., Changming L. Decomposition Characteristics and Kinetics of Microalgae in N2 and CO2 Atmospheres by a Thermogravimetry. J. Combust. 2017;2017:6160234. doi: 10.1155/2017/6160234. DOI

Figueira C.E., Firmino P.M., Jr., Giudici R. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris. Bioresour. Technol. 2015;198:717–724. doi: 10.1016/j.biortech.2015.09.059. PubMed DOI

Gotkiewicz O. Bechelor’s Thesis. Gdańsk University of Technology; Gdańsk, Poland: 2020. Algi morskie jako źródło komponentów dedykowanych do syntezy i przetwórstwa polimerów.

Kasprzyk P., Sadowska E., Datta J. Investigation of Thermoplastic Polyurethanes Synthesized via Two Different Prepolymers. J. Polym. Environ. 2019;27:2588–2599. doi: 10.1007/s10924-019-01543-7. DOI

Parcheta P., Głowińska E., Datta J. Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers. Eur. Polym. J. 2020;123:109422. doi: 10.1016/j.eurpolymj.2019.109422. DOI

Kimbell G., Azad M.A. 3D printing: Bioinspired materials for drug delivery. In: Nurunnabi M., editor. Bioinspired and Biomimetic Materials for Drug Delivery. Woodhead Publishing; New Delhi, India: 2021. pp. 295–318.

Haris N.I.N., Hassan M.Z., Ilyas R.A., Suhot M.A., Sapuan S.M., Dolah R., Mohammad R., Asyraf M.R.M. Dynamic mechanical properties of natural fiber reinforced hybrid polymer composites: A review. J. Mater. Res. Technol. 2022;19:167–182. doi: 10.1016/j.jmrt.2022.04.155. DOI

Saha A., Kumar S., Zindani D. Investigation of the effect of water absorption on thermomechanical and viscoelastic properties of flax-hemp-reinforced hybrid composite. Polym. Compos. 2021;42:4497–4516. doi: 10.1002/pc.26164. DOI

Kumar S., Zindani D., Bhowmik S. Investigation of Mechanical and Viscoelastic Properties of Flax- and Ramie-Reinforced Green Composites for Orthopedic Implants. J. Mater. Eng. Perform. 2020;29:3161–3171. doi: 10.1007/s11665-020-04845-3. DOI

Głowińska E., Datta J., Włoch M., Różańska M. The influence of chemical structure on mechanical and thermomechanical properties of cast biopolyurethane elastomers. Elastomery. 2018;22:40–50.

Liu T., Butaud P., Placet V., Ouisse M. Damping behavior of plant fiber composites: A review. Compos. Struct. 2021;275:114392. doi: 10.1016/j.compstruct.2021.114392. DOI

Zaini M.J., Fuad M.Y.A., Ismail Z., Mansor M.S., Mustafah J. The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polym. Int. 1996;40:51–55. doi: 10.1002/(SICI)1097-0126(199605)40:1<51::AID-PI514>3.0.CO;2-I. DOI

Głowińska E., Datta J., Parcheta P., Kaźmierczak N. Novel approaches of using of spirulina platensis in natural rubber based composites. J. Renew. Mater. 2018;6:680–687. doi: 10.32604/JRM.2018.00003. DOI

Georgopoulos S.T., Tarantili P.A., Avgerinos E., Andreopoulos A.G., Koukios E.G. Thermoplastic polymers reinforced with fibrous agricultural residues. Polym. Degrad. Stab. 2005;90:303–312. doi: 10.1016/j.polymdegradstab.2005.02.020. DOI

Kasprzyk P., Głowińska E., Datta J. Structure and properties comparison of poly(ether-urethane)s based on nonpetrochemical and petrochemical polyols obtained by solvent free two-step method. Eur. Polym. J. 2021;157:110673. doi: 10.1016/j.eurpolymj.2021.110673. DOI

Meadwell J., Paxman-Clarke L., Terris D., Ford P. In Search of a Performing Seal: Rethinking the Design of Tight-Fitting Respiratory Protective Equipment Facepieces for Users With Facial Hair. Saf. Health Work. 2019;10:275–304. doi: 10.1016/j.shaw.2019.05.001. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...