Synthesis, Characterization, and Gas Adsorption Performance of Amine-Functionalized Styrene-Based Porous Polymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-23760J
Czech Science Foundation
PubMed
36616362
PubMed Central
PMC9823677
DOI
10.3390/polym15010013
PII: polym15010013
Knihovny.cz E-zdroje
- Klíčová slova
- CO2 adsorption, amine impregnation, dendrimer, gas separation, hyper-crosslinked porous polymer,
- Publikační typ
- časopisecké články MeSH
In recent years, porous materials have been extensively studied by the scientific community owing to their excellent properties and potential use in many different areas, such as gas separation and adsorption. Hyper-crosslinked porous polymers (HCLPs) have gained attention because of their high surface area and porosity, low density, high chemical and thermal stability, and excellent adsorption capabilities in comparison to other porous materials. Herein, we report the synthesis, characterization, and gas (particularly CO2) adsorption performance of a series of novel styrene-based HCLPs. The materials were prepared in two steps. The first step involved radical copolymerization of divinylbenzene (DVB) and 4-vinylbenzyl chloride (VBC), a non-porous gel-type polymer, which was then modified by hyper-crosslinking, generating micropores with a high surface area of more than 700 m2 g-1. In the following step, the polymer was impregnated with various polyamines that reacted with residual alkyl chloride groups on the pore walls. This impregnation substantially improved the CO2/N2 and CO2/CH4 adsorption selectivity.
Department of Environmental Engineering National Chung Hsing University Taichung 402 Taiwan
Department of Occupational Safety and Health Chung Shan Medical University Taichung 402 Taiwan
Zobrazit více v PubMed
Mikkelsen M., Jorgensen M., Krebs F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010;3:43–81. doi: 10.1039/B912904A. DOI
IPCC . Climate Change 2014: Mitigation of Climate Change. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2015.
Leung D.Y.C., Caramanna G., Maroto-Valer M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014;39:426–443. doi: 10.1016/j.rser.2014.07.093. DOI
Zou L., Sun Y., Che S., Yang X., Wang X., Bosch M., Wang Q., Li H., Smith M., Yuan S., et al. Porous organic polymers for post-combustion carbon capture. Adv. Mater. 2017;29:1700229. doi: 10.1002/adma.201700229. PubMed DOI
Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.D. Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Control. 2008;2:9–20. doi: 10.1016/S1750-5836(07)00094-1. DOI
Ebner A.D., Ritter J.A. State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries. Sep. Sci. Technol. 2009;44:1273–1421. doi: 10.1080/01496390902733314. DOI
Gray M.L., Champagne K.J., Fauth D., Baltrus J.P., Pennline H. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. Int. J. Greenh. Gas Control. 2008;2:3–8. doi: 10.1016/S1750-5836(07)00088-6. DOI
Darunte L.A., Walton K.S., Sholl D.S., Jones C.W. CO2 Capture via Adsorption in Amine-Functionalized Sorbents. Curr. Opin. Chem. Eng. 2016;12:82–90. doi: 10.1016/j.coche.2016.03.002. DOI
Samanta A., Zhao A., Shimizu G.K., Sarkar P., Gupta R. Post-combustion CO2 capture using solid sorbents: A review. Ind Eng. Chem. Res. 2012;51:1438–1463. doi: 10.1021/ie200686q. DOI
Favvas E.P., Katsaros F.K., Papageorgiou S.K., Sapalidis A.A., Mitropoulos A.C. Review of the latest developments in polyimide-based membranes for CO2 separation. React. Funct. Polym. 2017;120:104–130. doi: 10.1016/j.reactfunctpolym.2017.09.002. DOI
Tiwari D., Goel C., Bhunia H., Bajpai P.K. Dynamic CO2 capture by carbon adsorbents: Kinetics, isotherm, and thermodynamic studies. Sep. Purif. Technol. 2017;181:107–122. doi: 10.1016/j.seppur.2017.03.014. DOI
Teo J.Y.Q., Ong A., Tan T.T.Y., Li X., Loh X.J., Lim J.Y.C. Materials from waste plastics for CO2 capture and utilization. Green Chem. 2022;24:6086. doi: 10.1039/D2GC02306G. DOI
Zhao X., Boruah B., Chin K.F., Đokić M., Modak J.M., Soo H.S. Upcycling to sustainably reuse plastics. Adv. Mater. 2021;34:2100843. doi: 10.1002/adma.202100843. PubMed DOI
Yeung C.W.S., Teo J.Y.Q., Loh X.J., Lim J.Y.C. Polyolefins and Polystyrene as Chemical Resources for a Sustainable Future: Challenges, Advances, and Prospects. ACS Mater. Lett. 2021;3:1660–1676. doi: 10.1021/acsmaterialslett.1c00490. DOI
Zhuo C., Levendis Y. Upcycling waste plastics into carbon nanomaterials: A review. J. Appl. Polym. Sci. 2014;131:39931. doi: 10.1002/app.39931. DOI
Yeung C.W.S., Loh W.W., Lau H.H., Loh X.J., Lim J.Y.C. Catalysts developed from waste plastics: A versatile system for biomass conversion. Mater. Today Chem. 2021;21:100524. doi: 10.1016/j.mtchem.2021.100524. DOI
Williamson J.B., Lewis S.E., Johnson R.R., III, Manning I.M., Leibfarth F.A. C–H Functionalization of Commodity Polymers. Angew. Chem. Int. Ed. 2019;58:8654–8668. doi: 10.1002/anie.201810970. PubMed DOI
Bäckström E., Odelius K., Hakkarainen M. Designed from Recycled: Turning Polyethylene Waste to Covalently Attached Polylactide Plasticizers. ACS Sustain. Chem. Eng. 2019;7:11004–11013. doi: 10.1021/acssuschemeng.9b02092. DOI
Gazi S., Đokić M., Chin K., Ng P.R., Soo H.S. Visible light-driven cascade carbon–carbon bond formation for organic transformations and plastic recycling. Adv. Sci. 2019;6:1902020. doi: 10.1002/advs.201902020. PubMed DOI PMC
Tan L., Tan B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017;46:3322–3356. doi: 10.1039/C6CS00851H. PubMed DOI
Zhang C., Liu Y., Li B., Tan B., Chen C.F., Xu H.B., Yang X.L. Triptycene-based microporous polymers: Synthesis and their gas storage properties. ACS Macro. Lett. 2012;1:190–193. doi: 10.1021/mz200076c. PubMed DOI
Ma H., Chen J.J., Tan L., Bu J.H., Zhu Y., Tan B., Zhang C. Nitrogen-rich triptycene-based porous polymer for gas storage and iodine enrichment. ACS Macro. Lett. 2016;5:1039–1043. doi: 10.1021/acsmacrolett.6b00567. PubMed DOI
Hankova L., Holub L., Jerabek K. Formation of porous polymer morphology by microsyneresis during divinylbenzene polymerization. J. Polym. Sci. B Polym. Phys. 2015;53:774–781. doi: 10.1002/polb.23693. DOI
Veverka P., Jeřábek K. Mechanism of hypercrosslinking of chloromethylated styrene–divinylbenzene copolymers. React. Funct. Polym. 1999;41:21. doi: 10.1016/S1381-5148(99)00030-9. DOI
Plastics: The Facts 2015: An Analysis of European Plastics Production, Demand and Waste Data. Plastics Europe; Brussels, Belgium: 2015.
Kaliva M., Armatas G.S., Vamvakaki M. Microporous Polystyrene Particles for Selective Carbon Dioxide Capture. Langmuir. 2012;28:2690–2695. doi: 10.1021/la204991n. PubMed DOI
Fu Z., Jia J., Li J., Liu C. Transforming waste expanded polystyrene foam into hypercrosslinked polymers for carbon dioxide capture and separation. Chem. Eng. J. 2017;323:557–564. doi: 10.1016/j.cej.2017.04.090. DOI
Fu Z., Mohamed I.M.A., Li J., Liu C. Novel adsorbents derived from recycled waste polystyrene via cross-linking reaction for enhanced adsorption capacity and separation selectivity of CO2. J. Taiwan Inst. Chem. Eng. 2019;97:381–388. doi: 10.1016/j.jtice.2019.01.014. DOI
Flouraki C., Kaliva M., Papadas I.T., Armatas G.S., Vamvakaki M. Nanoporous polystyrene–porphyrin nanoparticles for selective gas separation. Polym. Chem. 2016;7:3026–3033. doi: 10.1039/C6PY00296J. DOI
Sneddon G., McGlynn J.C., Neumann M.S., Aydin H.M., Yiu H.H.P., Ganin A.Y. Aminated poly(vinyl chloride) solid-state adsorbents with hydrophobic function for post-combustion CO2 capture. J. Mater. Chem. A. 2017;5:11864–11872. doi: 10.1039/C7TA00389G. DOI
Jo D.H., Lee C.H., Jung H., Jeon S., Kim S.H. Effect of amine surface density on CO2 adsorption behaviors of amine-functionalized polystyrene. Bull. Chem. Soc. Jpn. 2015;88:1317–1322. doi: 10.1246/bcsj.20150123. DOI
Lee D.Y., Zhang C.Y., Gao H.F. Amine-functionalized porous polymer network for highly selective absorption of CO2 over N2. Macromol. Chem. Phys. 2015;216:489–494. doi: 10.1002/macp.201400504. DOI
Yaumi A.L., Abu Bakar M.Z., Hameed B.H. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy. 2017;124:461–480. doi: 10.1016/j.energy.2017.02.053. DOI
Liu H., Li Q., Li Q., Jin W., Li X., Hameed A., Qiao S. Rational skeletal rigidity of conjugated microporous polythiophenes for gas uptake. Chem. Polym. Chem. 2017;8:6733–6740. doi: 10.1039/C7PY01268C. DOI
Davankov V., Tsyurupa M.P. Hypercrosslinked Polymeric Networks and Adsorbing Materials: Synthesis, Properties, Structure, and Applications. 1st ed. Elsevier; Amsterdam, The Netherlands: 2010.
Wu Y., Li L., Yang W., Feng S., Liu H. Hybrid nanoporous polystyrene derived from cubic octavinylsilsesquioxane and commercial polystyrene via the Friedel–Crafts reaction. RSC Adv. 2015;5:12987–12993. doi: 10.1039/C4RA14830D. DOI
Heer P.K.S., Khot K.M., Gaikar V.G. Development of polystyrene adsorbents functionalized with heterocyclic ligands for selective adsorption of CO2 from CH4 and N2. Sep. Purif. Technol. 2016;158:212–222. doi: 10.1016/j.seppur.2015.12.001. DOI
Merchán-Arenas D.R., Murcia-Patiño A.F. Synthesis of polyamino styrene from post-consumption expanded polystyrene and analysis of its CO2 scavenging capacity. Int. J. Environ. Sci. Technol. 2021;18:2519–2532. doi: 10.1007/s13762-020-03009-z. DOI
Harkins W.D., Jura G. Surfaces of solids. XIII. A vapor adsorption method is used to determine the area of a solid without the assumption of a molecular area and the areas occupied by nitrogen and other molecules on the surface of a solid. J. Am. Chem. Soc. 1944;66:1366–1373. doi: 10.1021/ja01236a048. DOI
Zhuang G.L., Tseng H.H., Wey M.Y. Feasibility of using waste polystyrene as a membrane material for gas separation. Chem. Eng. Res. Des. 2016;111:204–217. doi: 10.1016/j.cherd.2016.03.033. DOI
Liu H., Li S., Yang H., Liu S., Chen L., Tang Z., Fu R., Wu D. Stepwise crosslinking: A facile yet versatile conceptual strategy to nanomorphology-persistent porous organic polymers. Adv. Mater. 2017;29:1700723. doi: 10.1002/adma.201700723. PubMed DOI