Spatial genetic structure of European wild boar, with inferences on late-Pleistocene and Holocene demographic history

. 2023 Mar ; 130 (3) : 135-144. [epub] 20230113

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36639700
Odkazy

PubMed 36639700
PubMed Central PMC9981775
DOI 10.1038/s41437-022-00587-1
PII: 10.1038/s41437-022-00587-1
Knihovny.cz E-zdroje

European wildlife has been subjected to intensifying levels of anthropogenic impact throughout the Holocene, yet the main genetic partitioning of many species is thought to still reflect the late-Pleistocene glacial refugia. We analyzed 26,342 nuclear SNPs of 464 wild boar (Sus scrofa) across the European continent to infer demographic history and reassess the genetic consequences of natural and anthropogenic forces. We found that population fragmentation, inbreeding and recent hybridization with domestic pigs have caused the spatial genetic structure to be heterogeneous at the local scale. Underlying local anthropogenic signatures, we found a deep genetic structure in the form of an arch-shaped cline extending from the Dinaric Alps, via Southeastern Europe and the Baltic states, to Western Europe and, finally, to the genetically diverged Iberian peninsula. These findings indicate that, despite considerable anthropogenic influence, the deeper, natural continental structure is still intact. Regarding the glacial refugia, our findings show a weaker signal than generally assumed, but are nevertheless suggestive of two main recolonization routes, with important roles for Southern France and the Balkans. Our results highlight the importance of applying genomic resources and framing genetic results within a species' demographic history and geographic distribution for a better understanding of the complex mixture of underlying processes.

Animal Breeding and Genomics Group Wageningen University Droevendaalsesteeg 1 6708 PD Wageningen The Netherlands

Animal Sciences Group Wageningen University De Elst 1 6708 WD Wageningen The Netherlands

Centre of Wildlife Ecology Simon Fraser University Burnaby BC V5A 1S6 Canada

Department of Biology and CESAM Centre for Environmental and Marine Studies University of Aveiro Portugal e de Aveiro Portugal

Department of Chemistry and Bioscience Aalborg University Frederik Bajers Vej 7H 9220 Aalborg Denmark

Department of Fisheries Apiculture Wildlife Management and Special Zoology Faculty of Agriculture University of Zagreb Svetošimunska cesta 25 10000 Zagreb Croatia

Department of Game Management and Wildlife Biology Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcká 129 165 00 Praha 6 Czech Republic

Estació Biològica de Can Balasc Consorci del Parc Natural de la Serra de Collserola Ctra de l'Església 92 08017 Barcelona Spain

Estonian Environment Agency Rõõmu tee 6 50705 Tartu Estonia

Faculty of Environmental Protection Trg mladosti 7 3320 Velenje Slovenia

Faculty of Mathematics Natural Sciences and Information Technologies University of Primorska Glagoljaška 8 SI 6000 Koper Slovenia

Institute of Geography Russian Academy of Sciences Staromonetny per 29 Moscow 119017 Russia

Mammal Research Institute Polish Academy of Sciences Stoczek 1 17 230 Białowieża Poland

Ministry of Environment and Spatial Planning Dunajska 48 1000 Ljubljana Slovenia

Office Français pour la Biodiversité Monfort 01330 Birieux France

SaBio Instituto de Investigación en Recursos Cinegéticos IREC Ronda de Toledo 12 13071 Ciudad Real Spain

Sapientia Hungarian University of Transylvania 400112 Cluj Napoca str Matei Corvin nr 4 Romania

Servicio de Análisis Investigación y Gestión de Animales Silvestres Facultad de Veterinaria Universidad Cardenal Herrera CEU CEU Universities C Tirant lo Blanc 7 46115 Alfara del Patriarca Valencia Spain

Slovenian Forestry Institute Večna pot 2 1000 Ljubljana Slovenia

University of Sopron Bajcsy Zsilinszky u 4 H 9400 Sopron Hungary

Wildlife Ecology and Conservation Group Wageningen University Droevendaalsesteeg 3A 6708 PB Wageningen The Netherlands

Wildlife Ecology and Health group Edifici 5 Travessera del Turons 08193 Bellaterra Barcelona Spain

Zobrazit více v PubMed

Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet. 2015;47:217–225. doi: 10.1038/ng.3199. PubMed DOI

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC

Alexandri P, Megens HJ, Crooijmans RPMA, Groenen MAM, Goedbloed DJ, Herrero-Medrano JM, et al. Distinguishing migration events of different timing for wild boar in the Balkans. J Biogeogr. 2017;44:259–270. doi: 10.1111/jbi.12861. DOI

Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N, et al. The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr. 2012;39:713–723. doi: 10.1111/j.1365-2699.2011.02636.x. DOI

Alves PC, Pinheiro I, Godinho R, Vicente JJ, Gortázar C, Scandura M, et al. Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Biol J Linn Soc. 2010;101:797–822. doi: 10.1111/j.1095-8312.2010.01530.x. DOI

Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century (M Apollonio, R Andersen, and R Putman, Eds.) Cambridge University Press: Cambridge, UK

Azzaroli A, De Giuli C, Ficcarelli G, Torre D. Late pliocene to early mid-pleistocene mammals in Eurasia: Faunal succession and dispersal events. Palaeogeogr Palaeoclimatol Palaeoecol. 1988;66:77–100. doi: 10.1016/0031-0182(88)90082-X. DOI

Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Genomic analysis reveals depression due to both individual and maternal inbreeding in a free‐living mammal population. Mol Ecol. 2016;25:3152–3168. doi: 10.1111/mec.13681. PubMed DOI PMC

Braga RT, Rodrigues JFM, Diniz-Filho JAF, Rangel TF. Genetic population structure and allele surfing during range expansion in dynamic habitats. An da Academia Brasileira de Ciências. 2019;91:e20180179. doi: 10.1590/0001-3765201920180179. PubMed DOI

Bragina EV, Ives AR, Pidgeon AM, Kuemmerle T, Baskin LM, Gubar YP, Piquer-Rodríguez M, Keuler NS, Petrosyan VG, Radeloff VC. Rapid Declines of Large Mammal Populations after the Collapse of the Soviet Union. Cons Biol. 2015;29:844–853. doi: 10.1111/cobi.12450. PubMed DOI

Brewer S, Cheddadi R, de Beaulieu JL, Reille M, Allen J, Almqvist-Jacobson H, et al. The spread of deciduous Quercus throughout Europe since the last glacial period. For Ecol Manag. 2002;156:27–48. doi: 10.1016/S0378-1127(01)00646-6. DOI

Cahill S, Llimona F, Cabañeros L, Calomardo F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim Biodivers Conserv. 2012;35:221–233. doi: 10.32800/abc.2012.35.0221. DOI

Canu A, Costa S, Iacolina L, Piatti P, Apollonio M, Scandura M. Are captive wild boar more introgressed than free-ranging wild boar? Two case studies in Italy. Eur J Wildl Res. 2014;60:459–467. doi: 10.1007/s10344-014-0804-5. DOI

Canu A, Vilaça STT, Iacolina L, Apollonio M, Bertorelle G, Scandura M. Lack of polymorphism at the MC1R wild-type allele and evidence of domestic allele introgression across European wild boar populations. Mamm Biol. 2016;81:477–479. doi: 10.1016/j.mambio.2016.01.003. DOI

Carranza J, Salinas M, de Andrés D, Pérez-González J. Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol Evol. 2016;6:905–922. doi: 10.1002/ece3.1836. PubMed DOI PMC

Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015;4:1–16. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC

Cheddadi R, Bar-Hen A. Spatial gradient of temperature and potential vegetation feedback across Europe during the late Quaternary. Clim Dyn. 2009;32:371–379. doi: 10.1007/s00382-008-0405-7. DOI

Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, et al. The Last Glacial Maximum. Science. 2009;325:710–714. doi: 10.1126/science.1172873. PubMed DOI

DeGiorgio M, Rosenberg NA. Geographic sampling scheme as a determinant of the major axis of genetic variation in principal components analysis. Mol Biol Evol. 2013;30:480–488. doi: 10.1093/molbev/mss233. PubMed DOI PMC

Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, et al. (2013) Wildlife comeback in Europe. The recovery of selected mammal and bird species. London, UK

Eckert CG, Samis KE, Lougheed SC. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol. 2008;17:1170–1188. doi: 10.1111/j.1365-294X.2007.03659.x. PubMed DOI

Fang M, Berg F, Ducos A, Andersson L. Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38. Anim Genet. 2006;37:459–464. doi: 10.1111/j.1365-2052.2006.01498.x. PubMed DOI

Ferenčaković M, Sölkner J, Curik I. Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet Sel Evol. 2013;45:42. doi: 10.1186/1297-9686-45-42. PubMed DOI PMC

Ferreira E, Souto L, Soares AMVM, Fonseca C. Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mamm Biol. 2009;74:274–285. doi: 10.1016/j.mambio.2008.05.009. DOI

Franois O, Currat M, Ray N, Han E, Excoffier L, Novembre J. Principal component analysis under population genetic models of range expansion and admixture. Mol Biol Evol. 2010;27:1257–1268. doi: 10.1093/molbev/msq010. PubMed DOI

Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC. Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa) Mol Ecol. 2012;21:3445–3457. doi: 10.1111/j.1365-294X.2012.05623.x. PubMed DOI

Fulgione D, Rippa D, Buglione M, Trapanese M, Petrelli S, Maselli V. Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol Appl. 2016;9:769–776. doi: 10.1111/eva.12383. PubMed DOI PMC

Goedbloed DJ, Megens HJ, van Hooft P, Herrero-Medrano JM, Lutz W, Alexandri P, et al. Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol Ecol. 2013;22:856–866. doi: 10.1111/j.1365-294X.2012.05670.x. PubMed DOI

Goedbloed DJ, van Hooft P, Megens HJ, Langenbeck K, Lutz W, Crooijmans RPMA, et al. Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genet. 2013;14:2–10. doi: 10.1186/1471-2156-14-43. PubMed DOI PMC

Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012;491:393–398. doi: 10.1038/nature11622. PubMed DOI PMC

Herrero-Medrano JM, Megens H-J, Groenen MAM, Ramis G, Bosse M, Pérez-Enciso M, et al. Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet. 2013;14:1–13. doi: 10.1186/1471-2156-14-106. PubMed DOI PMC

Hewitt GM. Post-glacial re-colonization of European biota. Biol J Linn Soc. 1999;68:87–112. doi: 10.1111/j.1095-8312.1999.tb01160.x. DOI

Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359:183–195. doi: 10.1098/rstb.2003.1388. PubMed DOI PMC

Hiemstra PH, Pebesma EJ, Twenhöfel CJW, Heuvelink GBM. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput Geosci. 2009;35:1711–1721. doi: 10.1016/j.cageo.2008.10.011. DOI

Howrigan DP, Simonson MA, Keller MC. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics. 2011;12:460. doi: 10.1186/1471-2164-12-460. PubMed DOI PMC

Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM. Inbreeding depression across the lifespan in a wild mammal population. Proc Natl Acad Sci. 2016;113:3585–3590. doi: 10.1073/pnas.1518046113. PubMed DOI PMC

Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N. Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm Rev. 2019;49:45–59. doi: 10.1111/mam.12140. DOI

Iacolina L, Pertoldi C, Amills M, Kusza S, Megens H-J, Bâlteanu VA, et al. Hotspots of recent hybridization between pigs and wild boars in Europe. Sci Rep. 2018;8:17372. doi: 10.1038/s41598-018-35865-8. PubMed DOI PMC

Iacolina L, Scandura M, Goedbloed DJ, Alexandri P, Crooijmans RPMA, Larson G, et al. Genomic diversity and differentiation of a managed island wild boar population. Heredity. 2016;116:60–67. doi: 10.1038/hdy.2015.70. PubMed DOI PMC

Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:1–2. doi: 10.1093/bioinformatics/btr521. PubMed DOI PMC

de Jong JF, Hooft van P, Megens HJ, Crooijmans RPMA, Groot de GA, Pemberton JM, Huisman J, et al. Fragmentation and translocation distort the genetic landscape of ungulates: red deer in the Netherlands. Front Ecol Evol. 2020;8:535715. doi: 10.3389/fevo.2020.535715. DOI

Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281. doi: 10.7717/peerj.281. PubMed DOI PMC

Kardos M, Åkesson M, Fountain T, Flagstad Ø, Liberg O, Olason P, et al. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol. 2018;2:124–131. doi: 10.1038/s41559-017-0375-4. PubMed DOI

Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034. 10.1016/j.quascirev.2009.09.028

Koemle D, Zinngrebe Y, Yu X. Highway construction and wildlife populations: Evidence from Austria. Land use policy. 2018;73:447–457. doi: 10.1016/j.landusepol.2018.02.021. DOI

Krže B. Divji prašič: biologija, gojitev, ekologija. Ljubljana: Lovska zveza Slovenije; 1982.

Kusza S, Podgórski T, Scandura M, Borowik T, Jávor A, Sidorovich VE, et al. Contemporary genetic structure, phylogeography and past demographic processes of wild boar Sus scrofa population in central and eastern Europe. PLoS One. 2014;9:e91401. doi: 10.1371/journal.pone.0091401. PubMed DOI PMC

Lorenzini R, Lovari S, Masseti M. The rediscovery of the Italian roe deer: Genetic differentiation and management implications. Ital J Zool. 2002;69(4):367–379. doi: 10.1080/11250000209356482. DOI

Lorenzini R, San José C, Braza F, Aragón S. Genetic differentiation and phylogeography of roe deer in Spain, as suggested by mitochondrial DNA and microsatellite analysis. Ital J Zool. 2003;70(1):89–99. doi: 10.1080/11250000309356500. DOI

Magri D. Early to Middle Pleistocene dynamics of plant and mammal communities in South West Europe. Quat Int. 2013;288:63–72. doi: 10.1016/j.quaint.2012.02.028. DOI

Manunza A, Zidi A, Yeghoyan S, Balteanu VA, Carsai TC, Scherbakov O, et al. A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS One. 2013;8:e55891. doi: 10.1371/journal.pone.0055891. PubMed DOI PMC

Maselli V, Rippa D, De Luca A, Larson G, Wilkens B, Linderholm A, et al. Southern Italian wild boar population, hotspot of genetic diversity. Hystrix. 2016;27:137–144.

McVean G. A genealogical interpretation of principal components analysis. PLoS Genet. 2009;5:e1000686. doi: 10.1371/journal.pgen.1000686. PubMed DOI PMC

Megens H-J, Crooijmans RP, Cristobal M, Hui X, Li N, Groenen MA. Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet Sel Evol. 2008;40:103. PubMed PMC

Melis C, Szafrańska PA, Jȩdrzejewska B, Bartoń K. Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J Biogeogr. 2006;33:803–811. doi: 10.1111/j.1365-2699.2006.01434.x. DOI

Mihalik B, Stéger V, Frank K, Szendrei L, Kusza S. Barrier effect of the M3 highway in Hungary on the genetic diversity of wild boar (Sus scrofa) population. Res J Biotechnol. 2018;13:32–38.

NCBI (2018) Genome Organism Overview: Sus scrofa (pig). https://www.ncbi.nlm.nih.gov/genome?term=sus%20scrofa%20%5BOrganism%5D&cmd=DetailsSearch&report=Overview

Nikolov IS, Gum B, Markov G, Kuehn R. Population genetic structure of wild boar Sus scrofa in Bulgaria as revealed by microsatellite analysis. Acta Theriol (Warsz) 2009;54:193–205. doi: 10.4098/j.at.0001-7051.049.2008. DOI

Nykänen M, Rogan E, Foote AD, Kaschner K, Dabin W, Louis M, et al. Postglacial colonization of northern coastal habitat by bottlenose dolphins: a marine leading-edge expansion? J Hered. 2019;110:662–674. doi: 10.1093/jhered/esz039. PubMed DOI

Palombo M, Romana AV-G (2003) Remarks on the biochronology of mammalian faunal complexes from the Pliocene to the Middle Pleistocene in France. Geol Rom: 145–163

Paradis E, Claude J, Strimmer K. APE: analysis of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: A tool Set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. www.cog-genomics.org/plink/1.9/ PubMed PMC

Putman R, Apollonio M, Andersen R. Ungulate management in Europe: problems and practices. Cambridge, UK: Cambridge University Press; 2011.

R Core Team (2018) R: A language and environment for statistical computing. Vienna, Austria

Rejduch B, Sota E, Ró M, Ko M. Chromosome number polymorphism in a litter of European wild boar (Sus scrofa scrofa L.) Anim Sci Pap Rep. 2003;21:57–62.

Scandura M, Iacolina L, Apollonio M. Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization: Genetic variation in European wild boar. Mamm Rev. 2011;41:125–137. doi: 10.1111/j.1365-2907.2010.00182.x. DOI

Scandura M, Iacolina L, Cossu A, Apollonio M. Effects of human perturbation on the genetic make-up of an island population: The case of the Sardinian wild boar. Heredity. 2011;106:1012–1020. doi: 10.1038/hdy.2010.155. PubMed DOI PMC

Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V, et al. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: Are the effects of the last glaciation still detectable? Mol Ecol. 2008;17:1745–1762. doi: 10.1111/j.1365-294X.2008.03703.x. PubMed DOI

Scandura M, Fabbri G, Caniglia R, Iacolina L, Mattucci F, Mengoni C, Pante G, Apollonio M, Mucci N. Resilience to Historical Human Manipulations in the Genomic Variation of Italian Wild Boar Populations. Front Ecol Evol. 2022;10:833081. doi: 10.3389/fevo.2022.833081. DOI

Schmitt T, Varga Z. Extra-Mediterranean refugia: the rule and not the exception. Front Zool. 2012;9:22. doi: 10.1186/1742-9994-9-22. PubMed DOI PMC

Sommer RS, Fahlke JM, Schmölcke U, Benecke N, Zachos FE. Quaternary history of the European roe deer Capreolus capreolus. Mamm Rev. 2009;39:1–16. doi: 10.1111/j.1365-2907.2008.00137.x. DOI

Sommer RS, Nadachowski A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev. 2006;36:251–265. doi: 10.1111/j.1365-2907.2006.00093.x. DOI

Sommer RS, Zachos FE. Fossil evidence and phylogeography of temperate species: ‘glacial refugia’ and post-glacial recolonization. J Biogeogr. 2009;36:2013–2020. doi: 10.1111/j.1365-2699.2009.02187.x. DOI

Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N. Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev. 2008;27:714–733. doi: 10.1016/j.quascirev.2007.11.016. DOI

Stillfried M, Fickel J, Börner K, Wittstatt U, Heddergott M, Ortmann S, et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J Appl Ecol. 2017;54:272–281. doi: 10.1111/1365-2664.12756. DOI

Taberlet P, Fumagalli L, Wust-Saucy AG, Cossons JF. Comparative phylogeography and post-glacial colonization routes in Europe. Mol Ecol. 1998;7:453–461.. doi: 10.1046/j.1365-294x.1998.00289.x. PubMed DOI

Veličković N, Djan M, Ferreira E, Stergar M, Obreht D, Maletić V, et al. From north to south and back: the role of the Balkans and other southern peninsulas in the recolonization of Europe by wild boar. J Biogeogr. 2015;42:716–728. doi: 10.1111/jbi.12458. DOI

Veličković N, Ferreira E, Djan M, Ernst M, Obreht Vidaković D, Monaco A, et al. Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe. Heredity. 2016;117:348–357. doi: 10.1038/hdy.2016.53. PubMed DOI PMC

Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H, et al. The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis. Mol Ecol. 2003;12:585–595. doi: 10.1046/j.1365-294X.2003.01763.x. PubMed DOI

Vilaça ST, Biosa D, Zachos F, Iacolina L, Kirschning J, Alves PC, et al. Mitochondrial phylogeography of the European wild boar: The effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr. 2014;41:987–998. doi: 10.1111/jbi.12268. DOI

Zachos FE, Frantz AC, Kuehn R, Bertouille S, Colyn M, Niedziałkowska M et al. (2016) Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J Hered 107:318–326 PubMed PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.1rn8pk0z6

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...