Activation mechanisms and structural dynamics of STIM proteins
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu přehledy, časopisecké články
Grantová podpora
P30567
Austrian Science Fund
P32851
Austrian Science Fund
P35900
Austrian Science Fund
P36202
Austrian Science Fund
P36202
Austrian Science Fund
P32778
Austrian Science Fund
P33283
Austrian Science Fund
P34884
Austrian Science Fund
19-20728Y
Czech Science Foundation
PubMed
36651592
DOI
10.1113/jp283828
Knihovny.cz E-zdroje
- Klíčová slova
- CRAC, EF‐hand, STIM1, STIM1 C‐terminus,
- MeSH
- kanály aktivované uvolněním vápníku * MeSH
- membránové proteiny metabolismus MeSH
- protein ORAI1 MeSH
- protein STIM1 metabolismus MeSH
- proteiny STIM * metabolismus MeSH
- vápník metabolismus MeSH
- vápníková signalizace fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kanály aktivované uvolněním vápníku * MeSH
- membránové proteiny MeSH
- protein ORAI1 MeSH
- protein STIM1 MeSH
- proteiny STIM * MeSH
- vápník MeSH
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Gottfried Schatz Research Centre Medical University of Graz Graz Austria
Institute of Biophysics JKU Life Science Center Johannes Kepler University Linz Linz Austria
Zobrazit více v PubMed
Ahmad, M., Ong, H. L., Saadi, H., Son, G. Y., Shokatian, Z., Terry, L. E., Trebak, M., Yule, D. I., & Ambudkar, I. (2022). Functional communication between IP3R and STIM2 at subthreshold stimuli is a critical checkpoint for initiation of SOCE. Proceedings of the National Academy of Sciences, USA, 119(3).
Antigny, F., Sabourin, J., Sauc, S., Bernheim, L., Koenig, S., & Frieden, M. (2017). TRPC1 and TRPC4 channels functionally interact with STIM1L to promote myogenesis and maintain fast repetitive Ca2+ release in human myotubes. Biochimica et Biophysica Acta – Molecular Cell Research, 1864(5), 806–813.
Bakowski, D., Murray, F., & Parekh, A. B. (2021). Store‐operated Ca2+ channels: Mechanism, function, pharmacology, and therapeutic targets. Annual Review of Pharmacology and Toxicology, 61(1), 629–654.
Balla, T. (2018). Ca2+ and lipid signals hold hands at endoplasmic reticulum‐plasma membrane contact sites. The Journal of Physiology, 596(14), 2709–2716.
Barak, P., & Parekh, A. B. (2020). Signaling through Ca2+ microdomains from store‐operated CRAC channels. Cold Spring Harbor Perspectives in Biology, 12(7), a035097.
Barone, V., Del Re, V., Gamberucci, A., Polverino, V., Galli, L., Rossi, D., Costanzi, E., Toniolo, L., Berti, G., Malandrini, A., Ricci, G., Siciliano, G., Vattemi, G., Tomelleri, G., Pierantozzi, E., Spinozzi, S., Volpi, N., Fulceri, R., Battistutta, R., Reggiani, C., & Sorrentino, V. (2017). Identification and characterization of three novel mutations in the CASQ1 gene in four patients with tubular aggregate myopathy. Human Mutation, 38(12), 1761–1773.
Begley, M. J., Taylor, G. S., Kim, S. A., Veine, D. M., Dixon, J. E., & Stuckey, J. A. (2003). Crystal structure of a phosphoinositide phosphatase, MTMR2: Insights into myotubular myopathy and Charcot‐Marie‐Tooth syndrome. Molecular Cell, 12(6), 1391–1402.
Berger, P., Schaffitzel, C., Berger, I., Ban, N., & Suter, U. (2003). Membrane association of myotubularin‐related protein 2 is mediated by a pleckstrin homology‐GRAM domain and a coiled‐coil dimerization module. Proceedings of the National Academy of Sciences, USA, 100(21), 12177–12182.
Berlansky, S., Humer, C., Sallinger, M., & Frischauf, I. (2021). More than just simple interaction between STIM and Orai proteins: CRAC channel function enabled by a network of interactions with regulatory proteins. International Journal of Molecular Sciences, 22(1), 471.
Berridge, M. J. (1995). Capacitative calcium entry. Biochemical Journal, 312(Pt 1), 1–11.
Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: Dynamics, homeostasis and remodelling. Nature Reviews. Molecular Cell Biology, 4(7), 517–529.
Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1(1), 11–21.
Besprozvannaya, M., Dickson, E., Li, H., Ginburg, K. S., Bers, D. M., Auwerx, J., & Nunnari, J. (2018). GRAM domain proteins specialize functionally distinct ER‐PM contact sites in human cells. eLife, 7, e31019.
Bhardwaj, R., Muller, H. M., Nickel, W., & Seedorf, M. (2013). Oligomerization and Ca2+/calmodulin control binding of the ER Ca2+‐sensors STIM1 and STIM2 to plasma membrane lipids. Bioscience Reports, 33(5), e00077.
Bohm, J., Chevessier, F., Koch, C., Peche, G. A., Mora, M., Morandi, L., Pasanisi, B., Moroni, I., Tasca, G., Fattori, F., Ricci, E., Penisson‐Besnier, I., Nadaj‐Pakleza, A., Fardeau, M., Joshi, P. R., Deschauer, M., Romero, N. B., Eymard, B., & Laporte, J. (2014). Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1. Journal of Medical Genetics, 51(12), 824–833.
Bohm, J., Chevessier, F., Maues De Paula, A., Koch, C., Attarian, S., Feger, C., Hantai, D., Laforet, P., Ghorab, K., Vallat, J. M., Fardeau, M., Figarella‐Branger, D., Pouget, J., Romero, N. B., Koch, M., Ebel, C., Levy, N., Krahn, M., Eymard, B., Bartoli, M., & Laporte, J. (2013). Constitutive activation of the calcium sensor STIM1 causes tubular‐aggregate myopathy. American Journal of Human Genetics, 92(2), 271–278.
Bohm, J., & Laporte, J. (2018). Gain‐of‐function mutations in STIM1 and ORAI1 causing tubular aggregate myopathy and Stormorken syndrome. Cell Calcium, 76, 1–9.
Bohorquez‐Hernandez, A., Gratton, E., Pacheco, J., Asanov, A., & Vaca, L. (2017). Cholesterol modulates the cellular localization of Orai1 channels and its disposition among membrane domains. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids, 1862(12), 1481–1490.
Bojjireddy, N., Botyanszki, J., Hammond, G., Creech, D., Peterson, R., Kemp, D. C., Snead, M., Brown, R., Morrison, A., Wilson, S., Harrison, S., Moore, C., & Balla, T. (2014). Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4‐phosphate and phosphatidylinositol 4,5‐bisphosphate levels. Journal of Biological Chemistry, 289(9), 6120–6132.
Bonhenry, D., Schober, R., Schmidt, T., Waldherr, L., Ettrich, R. H., & Schindl, R. (2019). Mechanistic insights into the Orai channel by molecular dynamics simulations. Seminars in Cell & Developmental Biology, 94, 50–58.
Borsani, O., Piga, D., Costa, S., Govoni, A., Magri, F., Artoni, A., Cinnante, C. M., Fagiolari, G., Ciscato, P., Moggio, M., Bresolin, N., Comi, G. P., & Corti, S. (2018). Stormorken syndrome caused by a p.R304W STIM1 mutation: The first Italian patient and a review of the literature. Frontiers in Neurology, 9, 859.
Brandman, O., Liou, J., Park, W. S., & Meyer, T. (2007). STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell, 131(7), 1327–1339.
Brini, M., Cali, T., Ottolini, D., & Carafoli, E. (2013a). Intracellular calcium homeostasis and signaling. Metal Ions in Life Sciences, 12, 119–168.
Brini, M., Ottolini, D., Cali, T., & Carafoli, E. (2013b). Calcium in health and disease. Metal Ions in Life Sciences, 13, 81–137.
Broad, L. M., Braun, F. J., Lievremont, J. P., Bird, G. S., Kurosaki, T., & Putney, J. W., Jr (2001). Role of the phospholipase C‐inositol 1,4,5‐trisphosphate pathway in calcium release‐activated calcium current and capacitative calcium entry. Journal of Biological Chemistry, 276(19), 15945–15952.
Burgos, M., Philippe, R., Antigny, F., Buscaglia, P., Masson, E., Mukherjee, S., Dubar, P., Le Marechal, C., Campeotto, F., Lebonvallet, N., Frieden, M., Llopis, J., Domingo, B., Stathopulos, P. B., Ikura, M., Brooks, W., Guida, W., Chen, J. M., Ferec, C., Capiod, T., & Mignen, O. (2021). The p.E152K‐STIM1 mutation deregulates Ca2+ signaling contributing to chronic pancreatitis. Journal of Cell Science, 134(3),
Butorac, C., Muik, M., Derler, I., Stadlbauer, M., Lunz, V., Krizova, A., Lindinger, S., Schober, R., Frischauf, I., Bhardwaj, R., Hediger, M. A., Groschner, K., & Romanin, C. (2019). A novel STIM1‐Orai1 gating interface essential for CRAC channel activation. Cell Calcium, 79, 57–67.
Byun, M., Abhyankar, A., Lelarge, V., Plancoulaine, S., Palanduz, A., Telhan, L., Boisson, B., Picard, C., Dewell, S., Zhao, C., Jouanguy, E., Feske, S., Abel, L., & Casanova, J. L. (2010). Whole‐exome sequencing‐based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. Journal of Experimental Medicine, 207(11), 2307–2312.
Cai, X., Zhou, Y., Nwokonko, R. M., Loktionova, N. A., Wang, X., Xin, P., Trebak, M., Wang, Y., & Gill, D. L. (2016). The Orai1 store‐operated calcium channel functions as a hexamer. Journal of Biological Chemistry, 291(50), 25764–25775.
Calloway, N., Holowka, D., & Baird, B. (2010). A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C‐terminal acidic coiled coil of Orai1. Biochemistry, 49(6), 1067–1071.
Calloway, N., Owens, T., Corwith, K., Rodgers, W., Holowka, D., & Baird, B. (2011). Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P between distinct membrane pools. Journal of Cell Science, 124(15), 2602–2610.
Cao, X., Choi, S., Maleth, J. J., Park, S., Ahuja, M., & Muallem, S. (2015). The ER/PM microdomain, PI(4,5)P2 and the regulation of STIM1‐Orai1 channel function. Cell Calcium, 58(4), 342–348.
Carreras‐Sureda, A., Abrami, L., Ji‐Hee, K., Wang, W. A., Henry, C., Frieden, M., Didier, M., van der Goot, F. G., & Demaurex, N. (2021). S‐acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca2+ signaling by Jurkat T cell receptors at the immune synapse. eLife, 10, e72051.
Cendula, R., Dragun, M., Gazova, A., Kyselovic, J., Hulman, M., & Matus, M. (2019). Changes in STIM isoforms expression and gender‐specific alterations in Orai expression in human heart failure. Physiological Research, 68, S165‐S172.
Chan, J. J., Flatters, D., Rodrigues‐Lima, F., Yan, J., Thalassinos, K., & Katan, M. (2013). Comparative analysis of interactions of RASSF1‐10. Adv Biol Regul, 53(2), 190–201.
Chang, C. L., Chen, Y. J., & Liou, J. (2017). ER‐plasma membrane junctions: Why and how do we study them? Biochimica et Biophysica Acta Molecular Cell Research, 1864(9), 1494–1506.
Chang, C. L., Chen, Y. J., Quintanilla, C. G., Hsieh, T. S., & Liou, J. (2018). EB1 binding restricts STIM1 translocation to ER‐PM junctions and regulates store‐operated Ca2+ entry. Journal of Cell Biology, 217(6), 2047–2058.
Chang, C. L., Hsieh, T. S., Yang, T. T., Rothberg, K. G., Azizoglu, D. B., Volk, E., Liao, J. C., & Liou, J. (2013). Feedback regulation of receptor‐induced Ca2+ signaling mediated by E‐Syt1 and Nir2 at endoplasmic reticulum‐plasma membrane junctions. Cell Reports, 5(3), 813–825.
Chang, C. L., & Liou, J. (2015). Phosphatidylinositol 4,5‐bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum‐plasma membrane junctions. Journal of Biological Chemistry, 290(23), 14289–14301.
Chang, C. L., & Liou, J. (2016). Homeostatic regulation of the PI(4,5)P2‐Ca2+ signaling system at ER‐PM junctions. Biochimica et Biophysica Acta, 1861(8), 862–873.
Chen, J. J., Fan, Y., & Boehning, D. (2021). Regulation of dynamic protein S‐acylation. Frontiers in Molecular Biosciences, 8, 656440.
Chen, Y. F., Chiu, W. T., Chen, Y. T., Lin, P. Y., Huang, H. J., Chou, C. Y., Chang, H. C., Tang, M. J., & Shen, M. R. (2011). Calcium store sensor stromal‐interaction molecule 1‐dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proceedings of the National Academy of Sciences, USA, 108(37), 15225–15230.
Chen, Y. J., Chang, C. L., Lee, W. R., & Liou, J. (2017). RASSF4 controls SOCE and ER‐PM junctions through regulation of PI(4,5)P2. Journal of Cell Biology, 216(7), 2011–2025.
Chen, Y. T., Chen, Y. F., Chiu, W. T., Wang, Y. K., Chang, H. C., & Shen, M. R. (2013). The ER Ca(2)(+) sensor STIM1 regulates actomyosin contractility of migratory cells. Journal of Cell Science, 126(5), 1260–1267.
Cheng, K. T., Alevizos, I., Liu, X., Swaim, W. D., Yin, H., Feske, S., Oh‐hora, M., & Ambudkar, I. S. (2012). STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, Sjogren's syndrome. Proceedings of the National Academy of Sciences, USA, 109(36), 14544–14549.
Chung, S., Zhang, M., & Stathopulos, P. B. (2018). The 2β splice variation alters the structure and function of the stromal interaction molecule coiled‐coil domains. International Journal of Molecular Sciences, 19(11), 3316.
Chvanov, M., Walsh, C. M., Haynes, L. P., Voronina, S. G., Lur, G., Gerasimenko, O. V., Barraclough, R., Rudland, P. S., Petersen, O. H., Burgoyne, R. D., & Tepikin, A. V. (2008). ATP depletion induces translocation of STIM1 to puncta and formation of STIM1‐ORAI1 clusters: Translocation and re‐translocation of STIM1 does not require ATP. Pflugers Archiv: European Journal of Physiology, 457(2), 505–517.
Claeys, T., Goosens, V., Race, V., Theys, T., Thal, D. R., Depuydt, C. E., & Claeys, K. G. (2020). Clinical and muscle MRI features in a family with tubular aggregate myopathy and novel STIM1 mutation. Neuromuscular Disorders, 30(9), 709–718.
Collins, S. R., & Meyer, T. (2011). Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems. Trends in Cell Biology, 21(4), 202–211.
Conte, E., Pannunzio, A., Imbrici, P., Camerino, G. M., Maggi, L., Mora, M., Gibertini, S., Cappellari, O., De Luca, A., Coluccia, M., & Liantonio, A. (2021). Gain‐of‐function STIM1 L96V mutation causes myogenesis alteration in muscle cells from a patient affected by tubular aggregate myopathy. Frontiers in Cell and Developmental Biology, 9, 635063.
Covington, E. D., Wu, M. M., & Lewis, R. S. (2010). Essential role for the CRAC activation domain in store‐dependent oligomerization of STIM1. Molecular Biology of the Cell, 21(11), 1897–1907.
Cui, B., Yang, X., Li, S., Lin, Z., Wang, Z., Dong, C., & Shen, Y. (2013). The inhibitory helix controls the intramolecular conformational switching of the C‐terminus of STIM1. PLoS ONE, 8(9), e74735.
Darbellay, B., Arnaudeau, S., Bader, C. R., Konig, S., & Bernheim, L. (2011). STIM1L is a new actin‐binding splice variant involved in fast repetitive Ca2+ release. Journal of Cell Biology, 194(2), 335–346.
de la Fuente‐Munoz, E., Van Den Rym, A., Garcia‐Solis, B., Ochoa Grullon, J., Guevara‐Hoyer, K., Fernandez‐Arquero, M., Galan Davila, L., Matias‐Guiu, J., Sanchez‐Ramon, S., & Perez de Diego, R. (2022). Case Report: Novel STIM1 gain‐of‐function mutation in a patient with TAM/STRMK and immunological involvement. Frontiers in Immunology, 13, 917601.
DebRoy, A., Vogel, S. M., Soni, D., Sundivakkam, P. C., Malik, A. B., & Tiruppathi, C. (2014). Cooperative signaling via transcription factors NF‐kappaB and AP1/c‐Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin. Journal of Biological Chemistry, 289(35), 24188–24201.
Derler, I., Jardin, I., Stathopulos, P. B., Muik, M., Fahrner, M., Zayats, V., Pandey, S. K., Poteser, M., Lackner, B., Absolonova, M., Schindl, R., Groschner, K., Ettrich, R., Ikura, M., & Romanin, C. (2016). Cholesterol modulates Orai1 channel function. Science Signaling, 9(412), ra10.
Derler, I., Plenk, P., Fahrner, M., Muik, M., Jardin, I., Schindl, R., Gruber, H. J., Groschner, K., & Romanin, C. (2013). The extended transmembrane Orai1 N‐terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. Journal of Biological Chemistry, 288(40), 29025–29034.
Dickson, E. J. (2017). RASSF4: Regulator of plasma membrane PI(4,5)P2. Journal of Cell Biology, 216(7), 1879–1881.
Dong, H., Sharma, M., Zhou, H. X., & Cross, T. A. (2012). Glycines: Role in alpha‐helical membrane protein structures and a potential indicator of native conformation. Biochemistry, 51(24), 4779–4789.
Dziadek, M. A., & Johnstone, L. S. (2007). Biochemical properties and cellular localisation of STIM proteins. Cell Calcium, 42(2), 123–132.
Egorova, P. A., & Bezprozvanny, I. B. (2018). Inositol 1,4,5‐trisphosphate receptors and neurodegenerative disorders. Febs Journal, 285(19), 3547–3565.
Enomoto, M., Nishikawa, T., Back, S. I., Ishiyama, N., Zheng, L., Stathopulos, P. B., & Ikura, M. (2020). Coordination of a single calcium ion in the EF‐hand maintains the off state of the stromal interaction molecule luminal domain. Journal of Molecular Biology, 432(2), 367–383.
Ercan, E., Momburg, F., Engel, U., Temmerman, K., Nickel, W., & Seedorf, M. (2009). A conserved, lipid‐mediated sorting mechanism of yeast Ist2 and mammalian STIM proteins to the peripheral ER. Traffic, 10(12), 1802–1818.
Fahrner, M., Grabmayr, H., & Romanin, C. (2020). Mechanism of STIM activation. Current Opinion in Physiology, 17, 74–79.
Fahrner, M., Muik, M., Derler, I., Schindl, R., Fritsch, R., Frischauf, I., & Romanin, C. (2009). Mechanistic view on domains mediating STIM1‐Orai coupling. Immunological Reviews, 231(1), 99–112.
Fahrner, M., Muik, M., Schindl, R., Butorac, C., Stathopulos, P., Zheng, L., Jardin, I., Ikura, M., & Romanin, C. (2014). A coiled‐coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1). Journal of Biological Chemistry, 289(48), 33231–33244.
Fahrner, M., Pandey, S. K., Muik, M., Traxler, L., Butorac, C., Stadlbauer, M., Zayats, V., Krizova, A., Plenk, P., Frischauf, I., Schindl, R., Gruber, H. J., Hinterdorfer, P., Ettrich, R., Romanin, C., & Derler, I. (2018). Communication between N terminus and loop2 tunes Orai activation. Journal of Biological Chemistry, 293(4), 1271–1285.
Fahrner, M., Stadlbauer, M., Muik, M., Rathner, P., Stathopulos, P., Ikura, M., Muller, N., & Romanin, C. (2018). A dual mechanism promotes switching of the Stormorken STIM1 R304W mutant into the activated state. Nature Communications, 9(1), 825.
Fahrner, M., Schindl, R., Muik, M., Derler, I., & Romanin, C. (2017). The STIM‐Orai pathway: The interactions between STIM and Orai. Advances in Experimental Medicine and Biology, 993, 59–81.
Feske, S. (2019). CRAC channels and disease ‐ From human CRAC channelopathies and animal models to novel drugs. Cell Calcium, 80, 112–116.
Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., Hogan, P. G., Lewis, R. S., Daly, M., & Rao, A. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 441(7090), 179–185.
Fiser, A., & Sali, A. (2003). Modeller: Generation and refinement of homology‐based protein structure models. Methods in Enzymology, 374, 461–491.
Frischauf, I., Fahrner, M., Jardin, I., & Romanin, C. (2016). The STIM1: Orai interaction. Advances in Experimental Medicine and Biology, 898, 25–46.
Frischauf, I., Muik, M., Derler, I., Bergsmann, J., Fahrner, M., Schindl, R., Groschner, K., & Romanin, C. (2009). Molecular determinants of the coupling between STIM1 and Orai channels: Differential activation of Orai1‐3 channels by a STIM1 coiled‐coil mutant. Journal of Biological Chemistry, 284(32), 21696–21706.
Fuchs, S., Rensing‐Ehl, A., Speckmann, C., Bengsch, B., Schmitt‐Graeff, A., Bondzio, I., Maul‐Pavicic, A., Bass, T., Vraetz, T., Strahm, B., Ankermann, T., Benson, M., Caliebe, A., Folster‐Holst, R., Kaiser, P., Thimme, R., Schamel, W. W., Schwarz, K., Feske, S., & Ehl, S. (2012). Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. Journal of Immunology, 188(3), 1523–1533.
Furukawa, Y., Teraguchi, S., Ikegami, T., Dagliyan, O., Jin, L., Hall, D., Dokholyan, N. V., Namba, K., Akira, S., Kurosaki, T., Baba, Y., & Standley, D. M. (2014). Intrinsic disorder mediates cooperative signal transduction in STIM1. Journal of Molecular Biology, 426(10), 2082–2097.
Galan, C., Woodard, G. E., Dionisio, N., Salido, G. M., & Rosado, J. A. (2010). Lipid rafts modulate the activation but not the maintenance of store‐operated Ca2+ entry. Biochimica et Biophysica Acta, 1803(9), 1083–1093.
Gamage, T. H., Gunnes, G., Lee, R. H., Louch, W. E., Holmgren, A., Bruton, J. D., Lengle, E., Kolstad, T. R. S., Revold, T., Amundsen, S. S., Dalen, K. T., Holme, P. A., Tjonnfjord, G. E., Christensen, G., Westerblad, H., Klungland, A., Bergmeier, W., Misceo, D., & Frengen, E. (2018). STIM1 R304W causes muscle degeneration and impaired platelet activation in mice. Cell Calcium, 76, 87–100.
Gamage, T. H., Lengle, E., Gunnes, G., Pullisaar, H., Holmgren, A., Reseland, J. E., Merckoll, E., Corti, S., Mizobuchi, M., Morales, R. J., Tsiokas, L., Tjonnfjord, G. E., Lacruz, R. S., Lyngstadaas, S. P., Misceo, D., & Frengen, E. (2020). STIM1 R304W in mice causes subgingival hair growth and an increased fraction of trabecular bone. Cell Calcium, 85, 102110.
Gamper, N., & Rohacs, T. (2012). Phosphoinositide sensitivity of ion channels, a functional perspective. Sub‐Cellular Biochemistry, 59, 289–333.
Gang, Q., Bettencourt, C., Brady, S., Holton, J. L., Healy, E. G., McConville, J., Morrison, P. J., Ripolone, M., Violano, R., Sciacco, M., Moggio, M., Mora, M., Mantegazza, R., Zanotti, S., Wang, Z., Yuan, Y., Liu, W. W., Beeson, D., Hanna, M., & Houlden, H. (2022). Genetic defects are common in myopathies with tubular aggregates. Annals of Clinical and Translational Neurology, 9(1), 4–15.
Gatta, A. T., Wong, L. H., Sere, Y. Y., Calderon‐Norena, D. M., Cockcroft, S., Menon, A. K., & Levine, T. P. (2015). A new family of StART domain proteins at membrane contact sites has a role in ER‐PM sterol transport. eLife, 4, e07253.
Giordano, F., Saheki, Y., Idevall‐Hagren, O., Colombo, S. F., Pirruccello, M., Milosevic, I., Gracheva, E. O., Bagriantsev, S. N., Borgese, N., & De Camilli, P. (2013). PI(4,5)P(2)‐dependent and Ca2+‐regulated ER‐PM interactions mediated by the extended synaptotagmins. Cell, 153(7), 1494–1509.
Goddard, T. D., Huang, C. C., Meng, E. C., Pettersen, E. F., Couch, G. S., Morris, J. H., & Ferrin, T. E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science, 27(1), 14–25.
Grabmayr, H., Romanin, C., & Fahrner, M. (2020). STIM Proteins: An ever‐expanding family. International Journal of Molecular Sciences, 22(1), 378.
Grigoriev, I., Gouveia, S. M., van der Vaart, B., Demmers, J., Smyth, J. T., Honnappa, S., Splinter, D., Steinmetz, M. O., Putney, J. W., Jr., Hoogenraad, C. C., & Akhmanova, A. (2008). STIM1 is a MT‐plus‐end‐tracking protein involved in remodeling of the ER. Current Biology, 18(3), 177–182.
Grunberg, R., Nilges, M., & Leckner, J. (2006). Flexibility and conformational entropy in protein‐protein binding. Structure, 14(4), 683–693.
Gudlur, A., Zeraik, A. E., Hirve, N., Rajanikanth, V., Bobkov, A. A., Ma, G., Zheng, S., Wang, Y., Zhou, Y., Komives, E. A., & Hogan, P. G. (2018). Calcium sensing by the STIM1 ER‐luminal domain. Nature Communications, 9(1), 4536.
Gui, L., Zhu, J., Lu, X., Sims, S. M., Lu, W. Y., Stathopulos, P. B., & Feng, Q. (2018). S‐Nitrosylation of STIM1 by neuronal nitric oxide synthase inhibits store‐operated Ca2+ entry. Journal of Molecular Biology, 430(12), 1773–1785.
Gwozdz, T., Dutko‐Gwozdz, J., Schafer, C., & Bolotina, V. M. (2012). Overexpression of Orai1 and STIM1 proteins alters regulation of store‐operated Ca2+ entry by endogenous mediators. Journal of Biological Chemistry, 287(27), 22865–22872.
Harris, E., Burki, U., Marini‐Bettolo, C., Neri, M., Scotton, C., Hudson, J., Bertoli, M., Evangelista, T., Vroling, B., Polvikoski, T., Roberts, M., Topf, A., Bushby, K., McArthur, D., Lochmuller, H., Ferlini, A., Straub, V., & Barresi, R. (2017). Complex phenotypes associated with STIM1 mutations in both coiled coil and EF‐hand domains. Neuromuscular Disorders, 27(9), 861–872.
He, L., Jing, J., Zhu, L., Tan, P., Ma, G., Zhang, Q., Nguyen, N. T., Wang, J., Zhou, Y., & Huang, Y. (2017). Optical control of membrane tethering and interorganellar communication at nanoscales. Chemical Science, 8(8), 5275–5281.
He, L., Zhang, Y., Ma, G., Tan, P., Li, Z., Zang, S., Wu, X., Jing, J., Fang, S., Zhou, L., Wang, Y., Huang, Y., Hogan, P. G., Han, G., & Zhou, Y. (2015). Near‐infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. eLife, 4, e10024.
Heo, W. D., Inoue, T., Park, W. S., Kim, M. L., Park, B. O., Wandless, T. J., & Meyer, T. (2006). PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science, 314(5804), 1458–1461.
Hille, B., Dickson, E. J., Kruse, M., Vivas, O., & Suh, B. C. (2015). Phosphoinositides regulate ion channels. Biochimica et Biophysica Acta, 1851(6), 844–856.
Hirve, N., Rajanikanth, V., Hogan, P. G., & Gudlur, A. (2018). Coiled‐coil formation conveys a STIM1 signal from ER lumen to cytoplasm. Cell Reports, 22(1), 72–83.
Hogan, P. G. (2015). The STIM1‐ORAI1 microdomain. Cell Calcium, 58(4), 357–367.
Hoglinger, C., Grabmayr, H., Maltan, L., Horvath, F., Krobath, H., Muik, M., Tiffner, A., Renger, T., Romanin, C., Fahrner, M., & Derler, I. (2021). Defects in the STIM1 SOARα2 domain affect multiple steps in the CRAC channel activation cascade. Cellular and Molecular Life Sciences, 78(19‐20), 6645–6667.
Honnappa, S., Gouveia, S. M., Weisbrich, A., Damberger, F. F., Bhavesh, N. S., Jawhari, H., Grigoriev, I., van Rijssel, F. J., Buey, R. M., Lawera, A., Jelesarov, I., Winkler, F. K., Wuthrich, K., Akhmanova, A., & Steinmetz, M. O. (2009). An EB1‐binding motif acts as a microtubule tip localization signal. Cell, 138(2), 366–376.
Horinouchi, T., Higashi, T., Higa, T., Terada, K., Mai, Y., Aoyagi, H., Hatate, C., Nepal, P., Horiguchi, M., Harada, T., & Miwa, S. (2012). Different binding property of STIM1 and its novel splice variant STIM1L to Orai1, TRPC3, and TRPC6 channels. Biochemical and Biophysical Research Communications, 428(2), 252–258.
Hoth, M., & Penner, R. (1992). Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature, 355(6358), 353–356.
Hou, X., Burstein, S. R., & Long, S. B. (2018). Structures reveal opening of the store‐operated calcium channel Orai. eLife, 7, e36758.
Hou, X., Outhwaite, I. R., Pedi, L., & Long, S. B. (2020). Cryo‐EM structure of the calcium release‐activated calcium channel Orai in an open conformation. eLife, 9, e62772.
Hou, X., Pedi, L., Diver, M. M., & Long, S. B. (2012). Crystal structure of the calcium release‐activated calcium channel Orai. Science, 338(6112), 1308–1313.
Huang, Y., Li, Q., Feng, Z., & Zheng, L. (2020). STIM1 controls calcineurin/Akt/mTOR/NFATC2‐mediated osteoclastogenesis induced by RANKL/M‐CSF. Exp Ther Med, 20(2), 736–747.
Ishii, T., Sato, K., Kakumoto, T., Miura, S., Touhara, K., Takeuchi, S., & Nakata, T. (2015). Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS. Nature Communications, 6(1), 8021.
Jardin, I., Dionisio, N., Frischauf, I., Berna‐Erro, A., Woodard, G. E., Lopez, J. J., Salido, G. M., & Rosado, J. A. (2013). The polybasic lysine‐rich domain of plasma membrane‐resident STIM1 is essential for the modulation of store‐operated divalent cation entry by extracellular calcium. Cell Signal, 25(5), 1328–1337.
Jha, A., Ahuja, M., Maleth, J., Moreno, C. M., Yuan, J. P., Kim, M. S., & Muallem, S. (2013). The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function. Journal of Cell Biology, 202(1), 71–79.
Jha, A., Chung, W. Y., Vachel, L., Maleth, J., Lake, S., Zhang, G., Ahuja, M., & Muallem, S. (2019). Anoctamin 8 tethers endoplasmic reticulum and plasma membrane for assembly of Ca2+ signaling complexes at the ER/PM compartment. EMBO Journal, 38(12).
Jin, J., Ye, M., Hu, K., Gong, J., & He, Q. (2019). STIM promotes the epithelial‐mesenchymal transition of podocytes through regulation of FcγRII activity in diabetic nephropathy. Histology and Histopathology, 34, 671–682.
Jing, J., He, L., Sun, A., Quintana, A., Ding, Y., Ma, G., Tan, P., Liang, X., Zheng, X., Chen, L., Shi, X., Zhang, S. L., Zhong, L., Huang, Y., Dong, M. Q., Walker, C. L., Hogan, P. G., Wang, Y., & Zhou, Y. (2015). Proteomic mapping of ER‐PM junctions identifies STIMATE as a regulator of Ca2+ influx. Nature Cell Biology, 17(10), 1339–1347.
Johnstone, L. S., Graham, S. J., & Dziadek, M. A. (2010). STIM proteins: Integrators of signalling pathways in development, differentiation and disease. Journal of Cellular and Molecular Medicine, 14(7), 1890–1903.
Kang, F., Zhou, M., Huang, X., Fan, J., Wei, L., Boulanger, J., Liu, Z., Salamero, J., Liu, Y., & Chen, L. (2019). E‐syt1 re‐arranges STIM1 clusters to stabilize ring‐shaped ER‐PM contact sites and accelerate Ca2+ store replenishment. Scientific Reports, 9(1), 3975.
Kawasaki, T., Lange, I., & Feske, S. (2009). A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochemical and Biophysical Research Communications, 385(1), 49–54.
Kawasaki, T., Ueyama, T., Lange, I., Feske, S., & Saito, N. (2010). Protein kinase C‐induced phosphorylation of Orai1 regulates the intracellular Ca2+ level via the store‐operated Ca2+ channel. Journal of Biological Chemistry, 285(33), 25720–25730.
Kilch, T., Alansary, D., Peglow, M., Dorr, K., Rychkov, G., Rieger, H., Peinelt, C., & Niemeyer, B. A. (2013). Mutations of the Ca2+‐sensing stromal interaction molecule STIM1 regulate Ca2+ influx by altered oligomerization of STIM1 and by destabilization of the Ca2+ channel Orai1. Journal of Biological Chemistry, 288(3), 1653–1664.
Kim, J. H., Carreras‐Sureda, A., Didier, M., Henry, C., Frieden, M., & Demaurex, N. (2022). The TAM‐associated STIM1(I484R) mutation increases ORAI1 channel function due to a reduced STIM1 inactivation break and an absence of microtubule trapping. Cell Calcium, 105, 102615.
Kim, Y. J., Guzman‐Hernandez, M. L., Wisniewski, E., & Balla, T. (2015). Phosphatidylinositol‐phosphatidic acid exchange by Nir2 at ER‐PM contact sites maintains phosphoinositide signaling competence. Developmental Cell, 33(5), 549–561.
Knapp, M. L., Alansary, D., Poth, V., Forderer, K., Sommer, F., Zimmer, D., Schwarz, Y., Kunzel, N., Kless, A., Machaca, K., Helms, V., Muhlhaus, T., Schroda, M., Lis, A., & Niemeyer, B. A. (2022). A longer isoform of Stim1 is a negative SOCE regulator but increases cAMP‐modulated NFAT signaling. EMBO Reports, 23(3), e53135.
Kodakandla, G., West, S. J., Wang, Q., Tewari, R., Zhu, M. X., Akimzhanov, A. M., & Boehning, D. (2022). Dynamic S‐acylation of the ER‐resident protein stromal interaction molecule 1 (STIM1) is required for store‐operated Ca2+ entry. Journal of Biological Chemistry, 298(9), 102303.
Kordyukova, L., Krabben, L., Serebryakova, M., & Veit, M. (2019). S‐Acylation of proteins. Methods in Molecular Biology, 1934, 265–291.
Korzeniowski, M. K., Manjarres, I. M., Varnai, P., & Balla, T. (2010). Activation of STIM1‐Orai1 involves an intramolecular switching mechanism. Science Signaling, 3(148), ra82.
Korzeniowski, M. K., Popovic, M. A., Szentpetery, Z., Varnai, P., Stojilkovic, S. S., & Balla, T. (2009). Dependence of STIM1/Orai1‐mediated calcium entry on plasma membrane phosphoinositides. Journal of Biological Chemistry, 284(31), 21027–21035.
Kovarova, M., Wassif, C. A., Odom, S., Liao, K., Porter, F. D., & Rivera, J. (2006). Cholesterol deficiency in a mouse model of Smith‐Lemli‐Opitz syndrome reveals increased mast cell responsiveness. Journal of Experimental Medicine, 203(5), 1161–1171.
Kyung, T., Lee, S., Kim, J. E., Cho, T., Park, H., Jeong, Y. M., Kim, D., Shin, A., Kim, S., Baek, J., Kim, J., Kim, N. Y., Woo, D., Chae, S., Kim, C. H., Shin, H. S., Han, Y. M., Kim, D., & Heo, W. D. (2015). Optogenetic control of endogenous Ca2+ channels in vivo. Nature Biotechnology, 33(10), 1092–1096.
Lacruz, R. S., & Feske, S. (2015). Diseases caused by mutations in ORAI1 and STIM1. Annals of the New York Academy of Sciences, 1356(1), 45–79.
Levitan, I., Fang, Y., Rosenhouse‐Dantsker, A., & Romanenko, V. (2010). Cholesterol and ion channels. Sub‐Cellular Biochemistry, 51, 509–549.
Lewis, R. S. (2020). Store‐operated calcium channels: from function to structure and back again. Cold Spring Harbor Perspectives in Biology, 12(5), a035055.
Liou, J., Fivaz, M., Inoue, T., & Meyer, T. (2007). Live‐cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proceedings of the National Academy of Sciences, USA, 104(22), 9301–9306.
Liou, J., Kim, M. L., Heo, W. D., Jones, J. T., Myers, J. W., Ferrell, J. E., Jr., & Meyer, T. (2005). STIM is a Ca2+ sensor essential for Ca2+‐store‐depletion‐triggered Ca2+ influx. Current Biology, 15(13), 1235–1241.
Liu, X., Wu, G., Yu, Y., Chen, X., Ji, R., Lu, J., Li, X., Zhang, X., Yang, X., & Shen, Y. (2019). Molecular understanding of calcium permeation through the open Orai channel. PLoS Biology, 17(4), e3000096.
Luik, R. M., Wang, B., Prakriya, M., Wu, M. M., & Lewis, R. S. (2008). Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature, 454(7203), 538–542.
Lunz, V., Romanin, C., & Frischauf, I. (2019). STIM1 activation of Orai1. Cell Calcium, 77, 29–38.
Luo, X., Hojayev, B., Jiang, N., Wang, Z. V., Tandan, S., Rakalin, A., Rothermel, B. A., Gillette, T. G., & Hill, J. A. (2012). STIM1‐dependent store‐operated Ca2+ entry is required for pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 52(1), 136–147.
Ma, G., He, L., Liu, S., Xie, J., Huang, Z., Jing, J., Lee, Y. T., Wang, R., Luo, H., Han, W., Huang, Y., & Zhou, Y. (2020). Optogenetic engineering to probe the molecular choreography of STIM1‐mediated cell signaling. Nature Communications, 11(1), 1039.
Ma, G., Wei, M., He, L., Liu, C., Wu, B., Zhang, S. L., Jing, J., Liang, X., Senes, A., Tan, P., Li, S., Sun, A., Bi, Y., Zhong, L., Si, H., Shen, Y., Li, M., Lee, M. S., Zhou, W., Wang, J., Wang, Y., & Zhou, Y. (2015). Inside‐out Ca2+ signalling prompted by STIM1 conformational switch. Nature Communications, 6(1), 7826.
Maleth, J., Choi, S., Muallem, S., & Ahuja, M. (2014). Translocation between PI(4,5)P2‐poor and PI(4,5)P2‐rich microdomains during store depletion determines STIM1 conformation and Orai1 gating. Nature Communications, 5(1), 5843.
Maltan, L., Andova, A. M., & Derler, I. (2022). The role of lipids in CRAC channel function. Biomolecules, 12(3), 352.
Mancarella, S., Potireddy, S., Wang, Y., Gao, H., Gandhirajan, R. K., Autieri, M., Scalia, R., Cheng, Z., Wang, H., Madesh, M., Houser, S. R., & Gill, D. L. (2013). Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle. FASEB Journal, 27(3), 893–906.
Mancarella, S., Wang, Y., Deng, X., Landesberg, G., Scalia, R., Panettieri, R. A., Mallilankaraman, K., Tang, X. D., Madesh, M., & Gill, D. L. (2011). Hypoxia‐induced acidosis uncouples the STIM‐Orai calcium signaling complex. Journal of Biological Chemistry, 286(52), 44788–44798.
Markello, T., Chen, D., Kwan, J. Y., Horkayne‐Szakaly, I., Morrison, A., Simakova, O., Maric, I., Lozier, J., Cullinane, A. R., Kilo, T., Meister, L., Pakzad, K., Bone, W., Chainani, S., Lee, E., Links, A., Boerkoel, C., Fischer, R., Toro, C., White, J. G., Gahl, W. A., & Gunay‐Aygun, M. (2015). York platelet syndrome is a CRAC channelopathy due to gain‐of‐function mutations in STIM1. Molecular Genetics and Metabolism, 114(3), 474–482.
Maus, M., Jairaman, A., Stathopulos, P. B., Muik, M., Fahrner, M., Weidinger, C., Benson, M., Fuchs, S., Ehl, S., Romanin, C., Ikura, M., Prakriya, M., & Feske, S. (2015). Missense mutation in immunodeficient patients shows the multifunctional roles of coiled‐coil domain 3 (CC3) in STIM1 activation. Proceedings of the National Academy of Sciences, USA, 112(19), 6206–6211.
Miederer, A. M., Alansary, D., Schwar, G., Lee, P. H., Jung, M., Helms, V., & Niemeyer, B. A. (2015). A STIM2 splice variant negatively regulates store‐operated calcium entry. Nature Communications, 6(1), 6899.
Misceo, D., Holmgren, A., Louch, W. E., Holme, P. A., Mizobuchi, M., Morales, R. J., De Paula, A. M., Stray‐Pedersen, A., Lyle, R., Dalhus, B., Christensen, G., Stormorken, H., Tjonnfjord, G. E., & Frengen, E. (2014). A dominant STIM1 mutation causes Stormorken syndrome. Human Mutation, 35(5), 556–564.
Morales‐Lazaro, S. L., & Rosenbaum, T. (2017). Multiple mechanisms of regulation of transient receptor potential ion channels by cholesterol. Current Topics in Membranes, 80, 139–161.
Morin, G., Bruechle, N. O., Singh, A. R., Knopp, C., Jedraszak, G., Elbracht, M., Bremond‐Gignac, D., Hartmann, K., Sevestre, H., Deutz, P., Herent, D., Nurnberg, P., Romeo, B., Konrad, K., Mathieu‐Dramard, M., Oldenburg, J., Bourges‐Petit, E., Shen, Y., Zerres, K., Ouadid‐Ahidouch, H., & Rochette, J. (2014). Gain‐of‐function mutation in STIM1 (P.R304W) is associated with Stormorken syndrome. Human Mutation, 35(10), 1221–1232.
Muik, M., Fahrner, M., Derler, I., Schindl, R., Bergsmann, J., Frischauf, I., Groschner, K., & Romanin, C. (2009). A Cytosolic Homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. Journal of Biological Chemistry, 284(13), 8421–8426.
Muik, M., Fahrner, M., Schindl, R., Stathopulos, P., Frischauf, I., Derler, I., Plenk, P., Lackner, B., Groschner, K., Ikura, M., & Romanin, C. (2011). STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO Journal, 30(9), 1678–1689.
Muik, M., Frischauf, I., Derler, I., Fahrner, M., Bergsmann, J., Eder, P., Schindl, R., Hesch, C., Polzinger, B., Fritsch, R., Kahr, H., Madl, J., Gruber, H., Groschner, K., & Romanin, C. (2008). Dynamic coupling of the putative coiled‐coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. Journal of Biological Chemistry, 283(12), 8014–8022.
Murley, A., Sarsam, R. D., Toulmay, A., Yamada, J., Prinz, W. A., & Nunnari, J. (2015). Ltc1 is an ER‐localized sterol transporter and a component of ER‐mitochondria and ER‐vacuole contacts. Journal of Cell Biology, 209(4), 539–548.
Naito, T., Ercan, B., Krshnan, L., Triebl, A., Koh, D. H. Z., Wei, F. Y., Tomizawa, K., Torta, F. T., Wenk, M. R., & Saheki, Y. (2019). Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. eLife, 8, e51401.
Nesin, V., Wiley, G., Kousi, M., Ong, E. C., Lehmann, T., Nicholl, D. J., Suri, M., Shahrizaila, N., Katsanis, N., Gaffney, P. M., Wierenga, K. J., & Tsiokas, L. (2014). Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proceedings of the National Academy of Sciences, USA, 111(11), 4197–4202.
Niemeyer, B. A. (2016). Changing calcium: CRAC channel (STIM and Orai) expression, splicing, and posttranslational modifiers. American Journal of Physiology Cell Physiology, 310(9), C701‐C709.
Noury, J. B., Bohm, J., Peche, G. A., Guyant‐Marechal, L., Bedat‐Millet, A. L., Chiche, L., Carlier, R. Y., Malfatti, E., Romero, N. B., & Stojkovic, T. (2017). Tubular aggregate myopathy with features of Stormorken disease due to a new STIM1 mutation. Neuromuscular Disorders, 27(1), 78–82.
Nowycky, M. C., & Thomas, A. P. (2002). Intracellular calcium signaling. Journal of Cell Science, 115(19), 3715–3716.
Okuma, H., Saito, F., Mitsui, J., Hara, Y., Hatanaka, Y., Ikeda, M., Shimizu, T., Matsumura, K., Shimizu, J., Tsuji, S., & Sonoo, M. (2016). Tubular aggregate myopathy caused by a novel mutation in the cytoplasmic domain of STIM1. Neurology Genetics, 2(1), e50.
Pacheco, J., Dominguez, L., Bohorquez‐Hernandez, A., Asanov, A., & Vaca, L. (2016). A cholesterol‐binding domain in STIM1 modulates STIM1‐Orai1 physical and functional interactions. Scientific Reports, 6(1), 29634.
Palty, R., Raveh, A., Kaminsky, I., Meller, R., & Reuveny, E. (2012). SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell, 149(2), 425–438.
Parekh, A. B. (2006). On the activation mechanism of store‐operated calcium channels. Pflugers Archiv: European Journal of Physiology, 453(3), 303–311.
Parekh, A. B. (2010). Store‐operated CRAC channels: Function in health and disease. Nature Reviews. Drug Discovery, 9(5), 399–410.
Parekh, A. B., & Putney, J. W., Jr (2005). Store‐operated calcium channels. Physiological Reviews, 85(2), 757–810.
Park, C. Y., Hoover, P. J., Mullins, F. M., Bachhawat, P., Covington, E. D., Raunser, S., Walz, T., Garcia, K. C., Dolmetsch, R. E., & Lewis, R. S. (2009). STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell, 136(5), 876–890.
Pascual‐Caro, C., Berrocal, M., Lopez‐Guerrero, A. M., Alvarez‐Barrientos, A., Pozo‐Guisado, E., Gutierrez‐Merino, C., Mata, A. M., & Martin‐Romero, F. J. (2018). STIM1 deficiency is linked to Alzheimer's disease and triggers cell death in SH‐SY5Y cells by upregulation of L‐type voltage‐operated Ca2+ entry. Journal of Molecular Medicine, 96(10), 1061–1079.
Pchitskaya, E., Kraskovskaya, N., Chernyuk, D., Popugaeva, E., Zhang, H., Vlasova, O., & Bezprozvanny, I. (2017). Stim2‐Eb3 association and morphology of dendritic spines in hippocampal neurons. Scientific Reports, 7(1), 17625.
Peinelt, C., Beck, A., Monteilh‐Zoller, M. K., Penner, R., & Fleig, A. (2009). IP3 receptor subtype‐dependent activation of store‐operated calcium entry through ICRAC. Cell Calcium, 45(4), 326–330.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70–82.
Picard, C., McCarl, C. A., Papolos, A., Khalil, S., Luthy, K., Hivroz, C., LeDeist, F., Rieux‐Laucat, F., Rechavi, G., Rao, A., Fischer, A., & Feske, S. (2009). STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. New England Journal of Medicine, 360(19), 1971–1980.
Pozo‐Guisado, E., Casas‐Rua, V., Tomas‐Martin, P., Lopez‐Guerrero, A. M., Alvarez‐Barrientos, A., & Martin‐Romero, F. J. (2013). Phosphorylation of STIM1 at ERK1/2 target sites regulates interaction with the microtubule plus‐end binding protein EB1. Journal of Cell Science, 126, 3170–3180.
Prakriya, M., Feske, S., Gwack, Y., Srikanth, S., Rao, A., & Hogan, P. G. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature, 443(7108), 230–233.
Prakriya, M., & Lewis, R. S. (2015). Store‐operated calcium channels. Physiological Reviews, 95(4), 1383–1436.
Putney, J. W., Jr (1986). A model for receptor‐regulated calcium entry. Cell Calcium, 7(1), 1–12.
Putney, J. W., Jr (2005). Capacitative calcium entry: Sensing the calcium stores. Journal of Cell Biology, 169(3), 381–382.
Ramesh, G., Jarzembowski, L., Schwarz, Y., Poth, V., Konrad, M., Knapp, M. L., Schwar, G., Lauer, A. A., Grimm, M. O. W., Alansary, D., Bruns, D., & Niemeyer, B. A. (2021). A short isoform of STIM1 confers frequency‐dependent synaptic enhancement. Cell Reports, 34(11), 108844.
Rana, A., Yen, M., Sadaghiani, A. M., Malmersjo, S., Park, C. Y., Dolmetsch, R. E., & Lewis, R. S. (2015). Alternative splicing converts STIM2 from an activator to an inhibitor of store‐operated calcium channels. Journal of Cell Biology, 209(5), 653–670.
Rathner, P., Fahrner, M., Cerofolini, L., Grabmayr, H., Horvath, F., Krobath, H., Gupta, A., Ravera, E., Fragai, M., Bechmann, M., Renger, T., Luchinat, C., Romanin, C., & Muller, N. (2021). Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation. Nature Chemical Biology, 17(2), 196–204.
Riva, B., Pessolano, E., Quaglia, E., Cordero‐Sanchez, C., Bhela, I. P., Topf, A., Serafini, M., Cox, D., Harris, E., Garibaldi, M., Barresi, R., Pirali, T., & Genazzani, A. A. (2022). STIM1 and ORAI1 mutations leading to tubular aggregate myopathies are sensitive to the Store‐operated Ca2+‐entry modulators CIC‐37 and CIC‐39. Cell Calcium, 105, 102605.
Roos, J., DiGregorio, P. J., Yeromin, A. V., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J. A., Wagner, S. L., Cahalan, M. D., Velicelebi, G., & Stauderman, K. A. (2005). STIM1, an essential and conserved component of store‐operated Ca2+ channel function. Journal of Cell Biology, 169(3), 435–445.
Rosado, J. A., & Sage, S. O. (2000). Phosphoinositides are required for store‐mediated calcium entry in human platelets. Journal of Biological Chemistry, 275(13), 9110–9113.
Sabbioni, S., Veronese, A., Trubia, M., Taramelli, R., Barbanti‐Brodano, G., Croce, C. M., & Negrini, M. (1999). Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD. Cytogenetics and Cell Genetics, 86(3–4), 214–218.
Sabourin, J., Boet, A., Rucker‐Martin, C., Lambert, M., Gomez, A. M., Benitah, J. P., Perros, F., Humbert, M., & Antigny, F. (2018). Ca2+ handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline‐induced right ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 118, 208–224.
Sallinger, M., Tiffner, A., Schmidt, T., Bonhenry, D., Waldherr, L., Frischauf, I., Lunz, V., Derler, I., Schober, R., & Schindl, R. (2020). Luminal STIM1 mutants that cause tubular aggregate myopathy promote autophagic processes. International Journal of Molecular Sciences, 21(12), 4410.
Sampieri, A., Zepeda, A., Asanov, A., & Vaca, L. (2009). Visualizing the store‐operated channel complex assembly in real time: Identification of SERCA2 as a new member. Cell Calcium, 45(5), 439–446.
Schober, R., Bonhenry, D., Lunz, V., Zhu, J., Krizova, A., Frischauf, I., Fahrner, M., Zhang, M., Waldherr, L., Schmidt, T., Derler, I., Stathopulos, P. B., Romanin, C., Ettrich, R. H., & Schindl, R. (2019a). Sequential activation of STIM1 links Ca2+ with luminal domain unfolding. Science Signaling, 12(608), eaax3194.
Schober, R., Waldherr, L., Schmidt, T., Graziani, A., Stilianu, C., Legat, L., Groschner, K., & Schindl, R. (2019b). STIM1 and Orai1 regulate Ca2+ microdomains for activation of transcription. Biochimica et Biophysica Acta – Molecular Cell Research, 1866(7), 1079–1091.
Shaw, P. J., & Feske, S. (2012). Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. The Journal of Physiology, 590(17), 4157–4167.
Shipston, M. J. (2011). Ion channel regulation by protein palmitoylation. Journal of Biological Chemistry, 286(11), 8709–8716.
Shrestha, N., Hye‐Ryong Shim, A., Maneshi, M. M., See‐Wai Yeung, P., Yamashita, M., & Prakriya, M. (2022). Mapping interactions between the CRAC activation domain and CC1 regulating the activity of the ER Ca2+ sensor STIM1. Journal of Biological Chemistry, 298(8), 102157.
Silva‐Rojas, R., Charles, A. L., Djeddi, S., Geny, B., Laporte, J., & Bohm, J. (2021). Pathophysiological effects of overactive STIM1 on murine muscle function and structure. Cells, 10(7), 1730.
Singh, A. R., Morin, G., & Rochette, J. (2015). Stormorken syndrome or York platelet syndrome: A clinician's dilemma. Molecular Genetics and Metabolism Reports, 2, 80.
Sirko, C., Novello, M. J., & Stathopulos, P. B. (2022). An S‐glutathiomimetic provides structural insights into stromal interaction molecule‐1 regulation. Journal of Molecular Biology, 434(24), 167874.
Soboloff, J., Madesh, M., & Gill, D. L. (2011). Sensing cellular stress through STIM proteins. Nature Chemical Biology, 7(8), 488–492.
Soboloff, J., Rothberg, B. S., Madesh, M., & Gill, D. L. (2012). STIM proteins: dynamic calcium signal transducers. Nature Reviews. Molecular Cell Biology, 13(9), 549–565.
Son, A., Park, S., Shin, D. M., & Muallem, S. (2016). Orai1 and STIM1 in ER/PM junctions: roles in pancreatic cell function and dysfunction. American Journal of Physiology Cell Physiology, 310(6), C414‐C422.
Spassova, M. A., Soboloff, J., He, L. P., Xu, W., Dziadek, M. A., & Gill, D. L. (2006). STIM1 has a plasma membrane role in the activation of store‐operated Ca2+ channels. Proceedings of the National Academy of Sciences, USA, 103(11), 4040–4045.
Srikanth, S., Jew, M., Kim, K. D., Yee, M. K., Abramson, J., & Gwack, Y. (2012). Junctate is a Ca2+‐sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Proceedings of the National Academy of Sciences, USA, 109(22), 8682–8687.
Stathopulos, P. B., & Ikura, M. (2010). Partial unfolding and oligomerization of stromal interaction molecules as an initiation mechanism of store operated calcium entry. Biochemistry and Cell Biology, 88(2), 175–183.
Stathopulos, P. B., Li, G. Y., Plevin, M. J., Ames, J. B., & Ikura, M. (2006). Stored Ca2+ depletion‐induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF‐SAM region: An initiation mechanism for capacitive Ca2+ entry. Journal of Biological Chemistry, 281(47), 35855–35862.
Stathopulos, P. B., Schindl, R., Fahrner, M., Zheng, L., Gasmi‐Seabrook, G. M., Muik, M., Romanin, C., & Ikura, M. (2013). STIM1/Orai1 coiled‐coil interplay in the regulation of store‐operated calcium entry. Nature Communications, 4(1), 2963.
Stathopulos, P. B., Zheng, L., Li, G. Y., Plevin, M. J., & Ikura, M. (2008). Structural and mechanistic insights into STIM1‐mediated initiation of store‐operated calcium entry. Cell, 135(1), 110–122.
Subedi, K. P., Ong, H. L., Son, G. Y., Liu, X., & Ambudkar, I. S. (2018). STIM2 induces activated conformation of STIM1 to control Orai1 Function in ER‐PM junctions. Cell Reports, 23(2), 522–534.
Thompson, J. L., Lai‐Zhao, Y., Stathopulos, P. B., Grossfield, A., & Shuttleworth, T. J. (2018). Phosphorylation‐mediated structural changes within the SOAR domain of stromal interaction molecule 1 enable specific activation of distinct Orai channels. Journal of Biological Chemistry, 293(9), 3145–3155.
Ticci, C., Cassandrini, D., Rubegni, A., Riva, B., Vattemi, G., Mata, S., Ricci, G., Baldacci, J., Guglielmi, V., Di Muzio, A., Malandrini, A., Tonin, P., Siciliano, G., Federico, A., Genazzani, A. A., Santorelli, F. M., & Merlini, L. (2021). Expanding the clinical and genetic spectrum of pathogenic variants in STIM1. Muscle & Nerve, 64, 567–575.
Tiffner, A., Hopl, V., & Derler, I. (2022). CRAC & SK channels: Their molecular mechanisms associated with cancer cell development Cancers, 15, 101.
Treves, S., Franzini‐Armstrong, C., Moccagatta, L., Arnoult, C., Grasso, C., Schrum, A., Ducreux, S., Zhu, M. X., Mikoshiba, K., Girard, T., Smida‐Rezgui, S., Ronjat, M., & Zorzato, F. (2004). Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. Journal of Cell Biology, 166(4), 537–548.
Vaeth, M., Kahlfuss, S., & Feske, S. (2020). CRAC channels and calcium signaling in T cell‐mediated immunity. Trends in Immunology, 41(10), 878–901.
van Dorp, S., Qiu, R., Choi, U. B., Wu, M. M., Yen, M., Kirmiz, M., Brunger, A. T., & Lewis, R. S. (2021). Conformational dynamics of auto‐inhibition in the ER calcium sensor STIM1. eLife, 10, e66194.
Vig, M., Peinelt, C., Beck, A., Koomoa, D. L., Rabah, D., Koblan‐Huberson, M., Kraft, S., Turner, H., Fleig, A., Penner, R., & Kinet, J. P. (2006). CRACM1 is a plasma membrane protein essential for store‐operated Ca2+ entry. Science, 312(5777), 1220–1223.
Walsh, C. M., Doherty, M. K., Tepikin, A. V., & Burgoyne, R. D. (2010). Evidence for an interaction between Golli and STIM1 in store‐operated calcium entry. The Biochemical Journal, 430(3), 453–460.
Walter, M. C., Rossius, M., Zitzelsberger, M., Vorgerd, M., Muller‐Felber, W., Ertl‐Wagner, B., Zhang, Y., Brinkmeier, H., Senderek, J., & Schoser, B. (2015). 50 years to diagnosis: Autosomal dominant tubular aggregate myopathy caused by a novel STIM1 mutation. Neuromuscular Disorders, 25(7), 577–584.
Wang, J., Shen, J., Zhao, K., Hu, J., Dong, J., & Sun, J. (2019). STIM1 overexpression in hypoxia microenvironment contributes to pancreatic carcinoma progression. Cancer Biology & Medicine, 16, 100–108.
Wang, J. Y., Sun, J., Huang, M. Y., Wang, Y. S., Hou, M. F., Sun, Y., He, H., Krishna, N., Chiu, S. J., Lin, S., Yang, S., & Chang, W. C. (2015). STIM1 overexpression promotes colorectal cancer progression, cell motility and COX‐2 expression. Oncogene, 34(33), 4358–4367.
Wang, Q. C., Wang, X., & Tang, T. S. (2018). EB1 traps STIM1 and regulates local store‐operated Ca2+ entry. Journal of Cell Biology, 217(6), 1899–1900.
Wang, S., Choi, M., Richardson, A. S., Reid, B. M., Seymen, F., Yildirim, M., Tuna, E., Gencay, K., Simmer, J. P., & Hu, J. C. (2014a). STIM1 and SLC24A4 are critical for enamel maturation. Journal of Dental Research, 93(7), 94S‐100S.
Wang, X., Wang, Y., Zhou, Y., Hendron, E., Mancarella, S., Andrake, M. D., Rothberg, B. S., Soboloff, J., & Gill, D. L. (2014b). Distinct Orai‐coupling domains in STIM1 and STIM2 define the Orai‐activating site. Nature Communications, 5(1), 3183.
Wen, J., Huang, Y. C., Xiu, H. H., Shan, Z. M., & Xu, K. Q. (2016). Altered expression of stromal interaction molecule (STIM)‐calcium release‐activated calcium channel protein (ORAI) and inositol 1,4,5‐trisphosphate receptors (IP3Rs) in cancer: will they become a new battlefield for oncotherapy? Chinese Journal of Cancer, 35(1), 32.
Williams, R. T., Manji, S. S., Parker, N. J., Hancock, M. S., Van Stekelenburg, L., Eid, J. P., Senior, P. V., Kazenwadel, J. S., Shandala, T., Saint, R., Smith, P. J., & Dziadek, M. A. (2001). Identification and characterization of the STIM (stromal interaction molecule) gene family: Coding for a novel class of transmembrane proteins. Biochemical Journal, 357(3), 673–685.
Wissenbach, U., Philipp, S. E., Gross, S. A., Cavalie, A., & Flockerzi, V. (2007). Primary structure, chromosomal localization and expression in immune cells of the murine ORAI and STIM genes. Cell Calcium, 42(4–5), 439–446.
Woo, J. S., Srikanth, S., Nishi, M., Ping, P., Takeshima, H., & Gwack, Y. (2016). Junctophilin‐4, a component of the endoplasmic reticulum‐plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proceedings of the National Academy of Sciences, USA, 113(10), 2762–2767.
Woo, J. S., Sun, Z., Srikanth, S., & Gwack, Y. (2020). The short isoform of extended synaptotagmin‐2 controls Ca2+ dynamics in T cells via interaction with STIM1. Scientific Reports, 10(1), 14433.
Wu, M. M., Covington, E. D., & Lewis, R. S. (2014). Single‐molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum‐plasma membrane junctions. Molecular Biology of the Cell, 25(22), 3672–3685.
Xia, J., Wang, H., Huang, H., Sun, L., Dong, S., Huang, N., Shi, M., Bin, J., Liao, Y., & Liao, W. (2016). Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer. Cancer Letters, 381(1), 31–40.
Xu, J. M., Zhou, Y., Gao, L., Zhou, S. X., Liu, W. H., & Li, X. A. (2016). Stromal interaction molecule 1 plays an important role in gastric cancer progression. Oncology Reports, 35(6), 3496–3504.
Yadav, S., Garner, K., Georgiev, P., Li, M., Gomez‐Espinosa, E., Panda, A., Mathre, S., Okkenhaug, H., Cockcroft, S., & Raghu, P. (2015). RDGBalpha, a PtdIns‐PtdOH transfer protein, regulates G‐protein‐coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction. Journal of Cell Science, 128, 3330–3344.
Yang, S., Zhang, J. J., & Huang, X. Y. (2009). Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell, 15(2), 124–134.
Yang, X., Jin, H., Cai, X., Li, S., & Shen, Y. (2012). Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proceedings of the National Academy of Sciences, USA, 109(15), 5657–5662.
Yang, Y., Jiang, Z., Wang, B., Chang, L., Liu, J., Zhang, L., & Gu, L. (2017). Expression of STIM1 is associated with tumor aggressiveness and poor prognosis in breast cancer. Pathology, Research and Practice, 213(9), 1043–1047.
Yazbeck, P., Tauseef, M., Kruse, K., Amin, M. R., Sheikh, R., Feske, S., Komarova, Y., & Mehta, D. (2017). STIM1 phosphorylation at Y361 recruits Orai1 to STIM1 puncta and induces Ca2+ entry. Scientific Reports, 7(1), 42758.
Yeh, Y. C., & Parekh, A. B. (2018). CRAC channels and Ca2+‐dependent gene expression. In Calcium Entry Channels in Non‐Excitable Cells, ed. Kozak, J. A. & Putney, J. W., Jr., pp. 93–106. Boca Raton (FL).
Yen, M., Lokteva, L. A., & Lewis, R. S. (2016). Functional analysis of Orai1 concatemers supports a hexameric stoichiometry for the CRAC channel. Biophysical Journal, 111(9), 1897–1907.
Yu, J., Zhang, H., Zhang, M., Deng, Y., Wang, H., Lu, J., Xu, T., & Xu, P. (2013). An aromatic amino acid in the coiled‐coil 1 domain plays a crucial role in the auto‐inhibitory mechanism of STIM1. Biochemical Journal, 454(3), 401–409.
Yuan, J. P., Zeng, W., Dorwart, M. R., Choi, Y. J., Worley, P. F., & Muallem, S. (2009). SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nature Cell Biology, 11(3), 337–343.
Zang, J., Zuo, D., Shogren, K. L., Gustafson, C. T., Zhou, Z., Thompson, M. A., Guo, R., Prakash, Y. S., Lu, L., Guo, W., Maran, A., & Yaszemski, M. J. (2019). STIM1 expression is associated with osteosarcoma cell survival. Chinese Journal of Cancer Research = Chung‐kuo yen cheng yen chiu, 31(1), 203–211.
Zbidi, H., Jardin, I., Woodard, G. E., Lopez, J. J., Berna‐Erro, A., Salido, G. M., & Rosado, J. A. (2011). STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. Journal of Biological Chemistry, 286(14), 12257–12270.
Zhang, S. L., Yeromin, A. V., Zhang, X. H. F., Yu, Y., Safrina, O., Penna, A., Roos, J., Stauderman, K. A., & Cahalan, M. D. (2006). Genome‐wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release‐activated Ca2+ channel activity. Proceedings of the National Academy of Sciences, USA, 103(24), 9357–9362.
Zhang, S. L., Yu, Y., Roos, J., Kozak, J. A., Deerinck, T. J., Ellisman, M. H., Stauderman, K. A., & Cahalan, M. D. (2005). STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature, 437(7060), 902–905.
Zheng, L., Stathopulos, P. B., Li, G. Y., & Ikura, M. (2008). Biophysical characterization of the EF‐hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochemical and Biophysical Research Communications, 369(1), 240–246.
Zheng, L., Stathopulos, P. B., Schindl, R., Li, G. Y., Romanin, C., & Ikura, M. (2011). Auto‐inhibitory role of the EF‐SAM domain of STIM proteins in store‐operated calcium entry. Proceedings of the National Academy of Sciences, USA, 108(4), 1337–1342.
Zheng, S., Ma, G., He, L., Zhang, T., Li, J., Yuan, X., Nguyen, N. T., Huang, Y., Zhang, X., Gao, P., Nwokonko, R., Gill, D. L., Dong, H., Zhou, Y., & Wang, Y. (2018). Identification of molecular determinants that govern distinct STIM2 activation dynamics. PLoS Biology, 16(11), e2006898.
Zhou, Y., Mancarella, S., Wang, Y., Yue, C., Ritchie, M., Gill, D. L., & Soboloff, J. (2009). The short N‐terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels. Journal of Biological Chemistry, 284(29), 19164–19168.
Zhou, Y., Meraner, P., Kwon, H. T., Machnes, D., Oh‐hora, M., Zimmer, J., Huang, Y., Stura, A., Rao, A., & Hogan, P. G. (2010). STIM1 gates the store‐operated calcium channel ORAI1 in vitro. Nature Structural & Molecular Biology, 17, 112–116.
Zhou, Y., Nwokonko, R. M., Cai, X., Loktionova, N. A., Abdulqadir, R., Xin, P., Niemeyer, B. A., Wang, Y., Trebak, M., & Gill, D. L. (2018). Cross‐linking of Orai1 channels by STIM proteins. Proceedings of the National Academy of Sciences, USA, 115(15), E3398‐E3407.
Zhou, Y., Srinivasan, P., Razavi, S., Seymour, S., Meraner, P., Gudlur, A., Stathopulos, P. B., Ikura, M., Rao, A., & Hogan, P. G. (2013). Initial activation of STIM1, the regulator of store‐operated calcium entry. Nature Structural & Molecular Biology, 20, 973–981.
Zhou, Y., Wang, X., Wang, X., Loktionova, N. A., Cai, X., Nwokonko, R. M., Vrana, E., Wang, Y., Rothberg, B. S., & Gill, D. L. (2015). STIM1 dimers undergo unimolecular coupling to activate Orai1 channels. Nature Communications, 6(1), 8395.
Zhu, J., Lu, X., Feng, Q., & Stathopulos, P. B. (2018). A charge‐sensing region in the stromal interaction molecule 1 luminal domain confers stabilization‐mediated inhibition of SOCE in response to S‐nitrosylation. Journal of Biological Chemistry, 293(23), 8900–8911.