Blockchain-enabled K-harmonic framework for industrial IoT-based systems

. 2023 Jan 18 ; 13 (1) : 1004. [epub] 20230118

Status odvoláno Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, odvolaná publikace

Perzistentní odkaz   https://www.medvik.cz/link/pmid36653424

Grantová podpora
Project number (RSP-2022/167) King Saud University

Odkazy

PubMed 36653424
PubMed Central PMC9849217
DOI 10.1038/s41598-023-27739-5
PII: 10.1038/s41598-023-27739-5
Knihovny.cz E-zdroje

Industrial Internet of Things (IIoT)-based systems have become an important part of industry consortium systems because of their rapid growth and wide-ranging application. Various physical objects that are interconnected in the IIoT network communicate with each other and simplify the process of decision-making by observing and analyzing the surrounding environment. While making such intelligent decisions, devices need to transfer and communicate data with each other. However, as devices involved in IIoT networks grow and the methods of connections diversify, the traditional security frameworks face many shortcomings, including vulnerabilities to attack, lags in data, sharing data, and lack of proper authentication. Blockchain technology has the potential to empower safe data distribution of big data generated by the IIoT. Prevailing data-sharing methods in blockchain only concentrate on the data interchanging among parties, not on the efficiency in sharing, and storing. Hence an element-based K-harmonic means clustering algorithm (CA) is proposed for the effective sharing of data among the entities along with an algorithm named underweight data block (UDB) for overcoming the obstacle of storage space. The performance metrics considered for the evaluation of the proposed framework are the sum of squared error (SSE), time complexity with respect to different m values, and storage complexity with CPU utilization. The results have experimented with MATLAB 2018a simulation environment. The proposed model has better sharing, and storing based on blockchain technology, which is appropriate IIoT.

Odvolání publikace

PubMed

Zobrazit více v PubMed

Rathee G, Sharma A, Kumar R, Iqbal R. A secure communicating things network framework for industrial IoT using blockchain technology. Ad Hoc Netw. 2019;94:101933. doi: 10.1016/j.adhoc.2019.101933. DOI

Zhang W, Wu Z, Han G, Feng Y, Shu L. Ldc: A lightweight dada consensus algorithm based on the blockchain for the industrial internet of things for smart city applications. Futur. Gener. Comput. Syst. 2020;108:574–582. doi: 10.1016/j.future.2020.03.009. DOI

Ritzdorf H, Soriente C, Karame GO, Marinovic S, Gruber D, Capkun S. Toward shared ownership in the cloud. IEEE Trans. Inf. Forensics Secur. 2018;13(12):3019–3034. doi: 10.1109/TIFS.2018.2837648. DOI

Wang Y. Industrial structure technology upgrade based on 5G network service and IoT intelligent manufacturing. Microprocess. Microsyst. 2021;81:103696. doi: 10.1016/j.micpro.2020.103696. DOI

Kang J, Xiong Z, Niyato D, Ye D, Kim DI, Zhao J. Toward secure blockchain-enabled internet of vehicles: Optimizing consensus management using reputation and contract theory. IEEE Trans. Veh. Technol. 2019;68(3):2906–2920. doi: 10.1109/TVT.2019.2894944. DOI

Balaji V, Maheswaran S, Babu MR, Kowsigan M, Prabhu E, Venkatachalam K. Combining statistical models using modified spectral subtraction method for embedded system. Microprocess. Microsyst. 2020;73:102957. doi: 10.1016/j.micpro.2019.102957. DOI

Sathesh S, Pradheep VA, Maheswaran S, Premkumar P, Gokul NS, Sriram P. Computer vision based real time tracking system to identify overtaking vehicles for safety precaution using single board computer. J. Adv. Res. Dyn. Control Syst. 2020;12:1551–1561. doi: 10.5373/JARDCS/V12SP7/20202258. DOI

Yu, Z., Liu, X. & Wang, G. A survey of consensus and incentive mechanism in blockchain derived from P2P. In 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), 1010–1015. 10.1109/PADSW.2018.8645047 (2018).

Drugman, T. & Alwan, A. Joint robust voicing detection and pitch estimation based on residual harmonics. Preprint at http://arXiv.org/2001.00459 (2019).

Benbouhenni H, Boudjema Z, Belaidi A. Indirect vector control of a DFIG supplied by a two-level FSVM inverter for wind turbine system. Majlesi J. Electr. Eng. 2019;13(1):45–54.

Zheng Z, Xie S, Dai H-N, Chen X, Wang H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018;14(4):352–375. doi: 10.1504/IJWGS.2018.095647. DOI

Thakkar, P., Nathan, S. & Viswanathan, B. Performance benchmarking and optimizing hyperledger fabric blockchain platform. In Proc. MASCOTS, 264–276 (IEEE, 2018).

Liang, X., Zhao, J., Shetty, S., Liu, J. & Li, D. Integrating blockchain for data sharing and collaboration in mobile healthcare applications. In Proc. PIMRC, 1–5 (IEEE, 2017).

Srivastava AK, Kumar Y, Singh PK. Computer aided diagnostic system based on SVM and K harmonic mean based attribute weighting method. Obes. Med. 2020;19:100270. doi: 10.1016/j.obmed.2020.100270. DOI

Yang H-K, Cha H-J, Song Y-J. Secure identifier management based on blockchain technology in NDN environment. IEEE Access. 2018;7:6262–6268. doi: 10.1109/ACCESS.2018.2885037. DOI

Fan K, Bao Z, Liu M, Vasilakos AV, Shi W. Dredas: Decentralized, reliable and efficient remote outsourced data auditing scheme with blockchain smart contract for industrial IoT. Futur. Gener. Comput. Syst. 2020;110:665–674. doi: 10.1016/j.future.2019.10.014. DOI

Wang W, Xu H, Alazab M, Gadekallu TR, Han Z, Su C. Blockchain-based reliable and efficient certificateless signature for IIoT devices. IEEE Trans. Ind. Inform. 2022;18:7059. doi: 10.1109/TII.2021.3084753. DOI

Senthil Kumar T, Sivanandam SN. An improved approach for detecting car in video using neural network model. J. Comput. Sci. 2012;8:1759–1768. doi: 10.3844/jcssp.2012.1759.1768. DOI

Song J, Han Z, Wang W, Chen J, Liu Y. A new secure arrangement for privacy-preserving data collection. Comput. Stand. Interfaces. 2022;80:103582. doi: 10.1016/j.csi.2021.103582. DOI

Madala HR, Ivakhnenko AG. Inductive Learning Algorithms for Complex Systems Modeling. CRC Press; 2019.

Cui Z, Cao Y, Cai X, Cai J, Chen J. Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things. J. Parallel Distrib. Comput. 2019;132:217–229. doi: 10.1016/j.jpdc.2017.12.014. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...