Examining the effects of BRG1 over-expression on Candida albicans strains growing as pseudohyphae
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
36656405
DOI
10.1007/s12223-023-01034-2
PII: 10.1007/s12223-023-01034-2
Knihovny.cz E-resources
- Keywords
- BRG1, Candida albicans, NRG1, RFG1, TUP1 pseudohyphae,
- MeSH
- Candida albicans * genetics MeSH
- Fungal Proteins * genetics metabolism MeSH
- Hyphae MeSH
- Gene Expression Regulation, Fungal MeSH
- Transcription Factors genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fungal Proteins * MeSH
- Transcription Factors MeSH
The pathogen Candida albicans is pleiomorphic and grows in yeast and filamentous forms but the relationship between the regulation of different filamentous forms is unclear. BRG1 encodes a DNA binding protein which is an important regulator of morphology. Mutants lacking BRG1 grow as yeast under all conditions tested and over-expressing BRG1 drives hyphal growth even in the absence of inducing signals. A number of genetic mutants in repressors of filamentation form pseudohyphae under yeast conditions and some of these mutants can form hyphae under hypha-inducing conditions. This study examines the position of BRG1 in the regulatory networks that govern filamentation by examining the effect of over-expressing BRG1 in pseudohyphal mutants.
See more in PubMed
Bensen ES, Filler SG, Berman J (2002) A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1:787–798. https://doi.org/10.1128/EC.1.5.787-798.2002 PubMed DOI PMC
Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109. https://doi.org/10.1126/science.277.5322.105 PubMed DOI
Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J 20:4753–4761. https://doi.org/10.1093/emboj/20.17.4753 PubMed DOI PMC
Care RS, Trevethick J, Binley KM, Sudbery PE (1999) The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34:792–798. https://doi.org/10.1046/j.1365-2958.1999.01641.x PubMed DOI
Cleary IA, Lazzell AL, Monteagudo C et al (2012) BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol 85:557–573. https://doi.org/10.1111/j.1365-2958.2012.08127.x PubMed DOI PMC
Cleary IA, Mulabagal P, Reinhard SM et al (2010) Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans. Eukaryot Cell 9:1363–1373. https://doi.org/10.1128/EC.00088-10 PubMed DOI PMC
Cleary IA, Reinhard SM, Lazzell AL et al (2016) Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis. FEMS Yeast Res 16:fow011. https://doi.org/10.1093/femsyr/fow011 PubMed DOI PMC
Do E, Cravener MV, Huang MY et al (2022) Collaboration between antagonistic cell type regulators governs natural variation in the Candida albicans biofilm and hyphal gene expression network. mBio 13:e01937–22. https://doi.org/10.1128/mbio.01937-22
Du H, Guan G, Xie J et al (2012) Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLOS ONE 7:e29707. https://doi.org/10.1371/journal.pone.0029707 PubMed DOI PMC
Huang MY, Woolford CA, May G et al (2019) Circuit diversification in a biofilm regulatory network. PLOS Pathogens 15:e1007787. https://doi.org/10.1371/journal.ppat.1007787 PubMed DOI PMC
Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21:2496–2505. https://doi.org/10.1128/MCB.21.7.2496-2505.2001 PubMed DOI PMC
Khalaf RA, Zitomer RS (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512. https://doi.org/10.1093/genetics/157.4.1503 PubMed DOI PMC
Köhler GA, White TC, Agabian N (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179:2331–2338. https://doi.org/10.1128/jb.179.7.2331-2338.1997 PubMed DOI PMC
Lu Y, Su C, Liu H (2012) A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLOS Pathogens 8:e1002663. https://doi.org/10.1371/journal.ppat.1002663 PubMed DOI PMC
Murad AMA, Lee PR, Broadbent ID et al (2000) CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16:325–327. https://doi.org/10.1002/1097-0061(20000315)16:4%3c325::AID-YEA538%3e3.0.CO;2-# PubMed DOI
Murad AMA, Leng P, Straffon M et al (2001) NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752. https://doi.org/10.1093/emboj/20.17.4742 PubMed DOI PMC
Nakayama H, Mio T, Nagahashi S et al (2000) Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect Immun 68:6712–6719. https://doi.org/10.1128/IAI.68.12.6712-6719.2000 PubMed DOI PMC
Nobile CJ, Fox EP, Nett JE et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138. https://doi.org/10.1016/j.cell.2011.10.048 PubMed DOI PMC
Reuß O, Vik Å, Kolter R, Morschhäuser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119–127. https://doi.org/10.1016/j.gene.2004.06.021 PubMed DOI
Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748. https://doi.org/10.1038/nrmicro2636 PubMed DOI
Wightman R, Bates S, Amornrrattanapan P, Sudbery P (2004) In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J Cell Biol 164:581–591. https://doi.org/10.1083/jcb.200307176 PubMed DOI PMC