• This record comes from PubMed

Examining the effects of BRG1 over-expression on Candida albicans strains growing as pseudohyphae

. 2023 Aug ; 68 (4) : 571-577. [epub] 20230119

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 36656405
DOI 10.1007/s12223-023-01034-2
PII: 10.1007/s12223-023-01034-2
Knihovny.cz E-resources

The pathogen Candida albicans is pleiomorphic and grows in yeast and filamentous forms but the relationship between the regulation of different filamentous forms is unclear. BRG1 encodes a DNA binding protein which is an important regulator of morphology. Mutants lacking BRG1 grow as yeast under all conditions tested and over-expressing BRG1 drives hyphal growth even in the absence of inducing signals. A number of genetic mutants in repressors of filamentation form pseudohyphae under yeast conditions and some of these mutants can form hyphae under hypha-inducing conditions. This study examines the position of BRG1 in the regulatory networks that govern filamentation by examining the effect of over-expressing BRG1 in pseudohyphal mutants.

See more in PubMed

Bensen ES, Filler SG, Berman J (2002) A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1:787–798. https://doi.org/10.1128/EC.1.5.787-798.2002 PubMed DOI PMC

Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109. https://doi.org/10.1126/science.277.5322.105 PubMed DOI

Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J 20:4753–4761. https://doi.org/10.1093/emboj/20.17.4753 PubMed DOI PMC

Care RS, Trevethick J, Binley KM, Sudbery PE (1999) The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34:792–798. https://doi.org/10.1046/j.1365-2958.1999.01641.x PubMed DOI

Cleary IA, Lazzell AL, Monteagudo C et al (2012) BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol 85:557–573. https://doi.org/10.1111/j.1365-2958.2012.08127.x PubMed DOI PMC

Cleary IA, Mulabagal P, Reinhard SM et al (2010) Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans. Eukaryot Cell 9:1363–1373. https://doi.org/10.1128/EC.00088-10 PubMed DOI PMC

Cleary IA, Reinhard SM, Lazzell AL et al (2016) Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis. FEMS Yeast Res 16:fow011. https://doi.org/10.1093/femsyr/fow011 PubMed DOI PMC

Do E, Cravener MV, Huang MY et al (2022) Collaboration between antagonistic cell type regulators governs natural variation in the Candida albicans biofilm and hyphal gene expression network. mBio 13:e01937–22. https://doi.org/10.1128/mbio.01937-22

Du H, Guan G, Xie J et al (2012) Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLOS ONE 7:e29707. https://doi.org/10.1371/journal.pone.0029707 PubMed DOI PMC

Huang MY, Woolford CA, May G et al (2019) Circuit diversification in a biofilm regulatory network. PLOS Pathogens 15:e1007787. https://doi.org/10.1371/journal.ppat.1007787 PubMed DOI PMC

Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21:2496–2505. https://doi.org/10.1128/MCB.21.7.2496-2505.2001 PubMed DOI PMC

Khalaf RA, Zitomer RS (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512. https://doi.org/10.1093/genetics/157.4.1503 PubMed DOI PMC

Köhler GA, White TC, Agabian N (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179:2331–2338. https://doi.org/10.1128/jb.179.7.2331-2338.1997 PubMed DOI PMC

Lu Y, Su C, Liu H (2012) A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLOS Pathogens 8:e1002663. https://doi.org/10.1371/journal.ppat.1002663 PubMed DOI PMC

Murad AMA, Lee PR, Broadbent ID et al (2000) CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16:325–327. https://doi.org/10.1002/1097-0061(20000315)16:4%3c325::AID-YEA538%3e3.0.CO;2-# PubMed DOI

Murad AMA, Leng P, Straffon M et al (2001) NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752. https://doi.org/10.1093/emboj/20.17.4742 PubMed DOI PMC

Nakayama H, Mio T, Nagahashi S et al (2000) Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect Immun 68:6712–6719. https://doi.org/10.1128/IAI.68.12.6712-6719.2000 PubMed DOI PMC

Nobile CJ, Fox EP, Nett JE et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138. https://doi.org/10.1016/j.cell.2011.10.048 PubMed DOI PMC

Reuß O, Vik Å, Kolter R, Morschhäuser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119–127. https://doi.org/10.1016/j.gene.2004.06.021 PubMed DOI

Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748. https://doi.org/10.1038/nrmicro2636 PubMed DOI

Wightman R, Bates S, Amornrrattanapan P, Sudbery P (2004) In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J Cell Biol 164:581–591. https://doi.org/10.1083/jcb.200307176 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...