Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
(PhD)scholarship)
Tunisian Ministry of Higher Education and Scientific Research
[1823][FIT4REUSE][Call 2018 Section 1 Water].
FIT4REUSE project "Safe and Sustainable Solutions for the Integrated Use of Non-Conventional Water Resources in the Mediterranean Agricultural Sector"
PubMed
36668807
PubMed Central
PMC9864862
DOI
10.3390/toxics11010081
PII: toxics11010081
Knihovny.cz E-zdroje
- Klíčová slova
- constructed wetlands, emerged substrates, endocrine-disrupting compounds, granulated cork, wastewater treatment,
- Publikační typ
- časopisecké články MeSH
Constructed wetlands (CWs) are considered as low-cost and energy-efficient wastewater treatment systems. Media selection is one of the essential technical keys for their implementation. The purpose of this work was essentially to evaluate the removal efficiency of organic pollution and nitrogen from municipal wastewater (MWW) using different selected media (gravel/gravel amended with granulated cork) in mesocosm horizontal flow constructed wetlands (HFCWs). The results showed that the highest chemical oxygen demand (COD) and ammonium nitrogen removal of 80.53% and 42%, respectively, were recorded in the units filled with gravel amended with cork. The influence of macrophytes (Phragmites australis and Typha angustifolia) was studied and both species showed steeper efficiencies. The system was operated under different hydraulic retention times (HRTs) i.e., 6 h, 24 h, 30 h, and 48 h. The obtained results revealed that the COD removal efficiency was significantly enhanced by up to 38% counter to the ammonium rates when HRT was increased from 6 h to 48 h. Moreover, the removal efficiency of two endocrine-disrupting compounds (EDCs) namely, bisphenol A (BPA) and diclofenac (DCF) was investigated in two selected HFCWs, at 48 h HRT. The achieved results proved the high capacity of cork for BPA and DCF removal with the removal rates of 90.95% and 89.66%, respectively. The results confirmed the role of these engineered systems, especially for EDC removal, which should be further explored.
Zobrazit více v PubMed
World Health Organization(WHO) Guidelines on Sanitation and Health. World Health Organisation; Geneva, Switzerland: 2018. [(accessed on 1 June 2022)]. Available online: https://www.who.int/publications/i/item/9789241514705.
Luo Y.L., Guo W.S., Ngo H.H., Nghiem L.D., Hai F.I., Zhang J., Liang S., Wang X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014;473:619–641. doi: 10.1016/j.scitotenv.2013.12.065. PubMed DOI
Cardona J.A., Segovia O.C., Böttger S., Castillo N.A.M., Cavallo L., Ribeiro I.E., Schlüter S. Reuse-oriented decentralized wastewater and sewage sludge treatment for rural settlements in Brazil: A cost-benefit analysis. Desalin. Water Treat. 2017;91:82–92. doi: 10.5004/dwt.2017.21421. DOI
Yang C., Fu T., Wang H., Chen R., Wang B., He T., Pi Y., Zhou J., Liang T., Chen M. Removal of organic pollutants by effluent recirculation constructed wetlands system treating landfill leachate. Environ. Technol. Innov. 2021;24:101843. doi: 10.1016/j.eti.2021.101843. DOI
Ma Y., Huang J., Han T., Yan C., Cao C., Cao M. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands. Water Res. 2021;202:117420. doi: 10.1016/j.watres.2021.117420. PubMed DOI
Vymazal J., Kröpfelová L. A three-stage experimental constructed wetland for treatment of domestic sewage: First 2 years of operation. Ecol. Eng. 2011;37:90–98. doi: 10.1016/j.ecoleng.2010.03.004. DOI
Darajeh N., Idris A., Masoumi H.R.F., Nourani A., Truong P., Sairi N.A. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. J. Environ. Manag. 2016;181:343–352. doi: 10.1016/j.jenvman.2016.06.060. PubMed DOI
Schug T.T., Johnson A.F., Birnbaum L.S., Colborn T., Guillette L.J., Jr., Crews D.P., Collins T., Soto A.M., Vom Saal F.S., McLachlan J.A., et al. Minireview: Endocrine Disruptors: Past Lessons and Future Directions. Mol. Endocrinol. 2016;30:833–847. doi: 10.1210/me.2016-1096. PubMed DOI PMC
Guo G., Ekama G.A., Wang Y., Dai J., Biswal B.K., Chen G., Wu D. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. Bioresour. Technol. 2019;285:121303. doi: 10.1016/j.biortech.2019.03.142. PubMed DOI
Wang J., Shi G., Yao J., Sheng N., Cui R., Su Z., Guo Y., Dai J. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. Environ. Int. 2019;134:105317. doi: 10.1016/j.envint.2019.105317. PubMed DOI
Flint S., Markle T., Thompson S., Wallace E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manag. 2012;104:19–34. doi: 10.1016/j.jenvman.2012.03.021. PubMed DOI
Fries E., Mahjoub O., Mahjoub B., Berrehouc A., Lions J., Bahadir M. Occurrence of contaminants of emerging concern (cec) in conventional and non- conventional water resources in tunisia. Fresenius Environ. Bull. 2016;25:3317–3339.
Bai X., Acharya K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environ. Pollut. 2019;247:534–540. doi: 10.1016/j.envpol.2019.01.075. PubMed DOI
Rochester J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 2013;42:132–155. doi: 10.1016/j.reprotox.2013.08.008. PubMed DOI
Sungur Ş., Köroğlu M., Özkan A. Determinatıon of bisphenol a migrating from canned food and beverages in markets. Food Chem. 2014;142:87–91. doi: 10.1016/j.foodchem.2013.07.034. PubMed DOI
Careghini A., Mastorgio A.F., Saponaro S., Sezenna E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environ. Sci. Pollut. Res. 2014;22:5711–5741. doi: 10.1007/s11356-014-3974-5. PubMed DOI PMC
Elbalkiny H.T., Yehia A.M., Riad S.M., Elsaharty Y.S. Potentiometric diclofenac detection in wastewater using functionalized nanoparticles. Microchem. J. 2018;145:90–95. doi: 10.1016/j.microc.2018.10.017. DOI
Mheidli N., Malli A., Mansour F., Al-Hindi M. Occurrence and risk assessment of pharmaceuticals in surface waters of the Middle East and North Africa: A review. Sci. Total Environ. 2022;851:158302. doi: 10.1016/j.scitotenv.2022.158302. PubMed DOI
Shamsudin M.S., Azha S.F., Sellaoui L., Badawi M., Bonilla-Petriciolet A., Ismail S. Performance and interactions of diclofenac adsorption using Alginate/Carbon-based Films: Experimental investigation and statistical physics modelling. Chem. Eng. J. 2021;428:131929. doi: 10.1016/j.cej.2021.131929. DOI
Arous F., Hamdi C., Bessadok S., Jaouani A. Innovative Biological Approaches for Contaminants of Emerging Concern Removal from Wastewater: A Mini-Review. Adv. Biotechnol. Microbiol. 2019;13:114–120. doi: 10.19080/AIBM.2019.13.555875. DOI
Li X., Tian T., Shang X., Zhang R., Xie H., Wang X., Wang H., Xie Q., Chen J., Kadokami K. Occurrence and Health Risks of Organic Micro-Pollutants and Metals in Groundwater of Chinese Rural Areas. Environ. Health Perspect. 2020;128:107010. doi: 10.1289/EHP6483. PubMed DOI PMC
Ipek I., Kabay N., Yüksel M. Separation of bisphenol A and phenol from water by polymer adsorbents: Equilibrium and kinetics studies. J. Water Process Eng. 2017;16:206–211. doi: 10.1016/j.jwpe.2017.01.006. DOI
Zhang P., Li Y., Cao Y., Han L. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019;285:121348. doi: 10.1016/j.biortech.2019.121348. PubMed DOI
Boateng L.K., Heo J., Flora J.R., Park Y.-G., Yoon Y. Molecular level simulation of the adsorption of bisphenol A and 17α-ethinyl estradiol onto carbon nanomaterials. Sep. Purif. Technol. 2013;116:471–478. doi: 10.1016/j.seppur.2013.06.028. DOI
Zhang K., Zhang Z.-H., Wang H., Wang X.-M., Zhang X.-H., Xie Y.F. Synergistic effects of combining ozonation, ceramic membrane filtration and biologically active carbon filtration for wastewater reclamation. J. Hazard. Mater. 2019;382:121091. doi: 10.1016/j.jhazmat.2019.121091. PubMed DOI
Golshan M., Jorfi S., Haghighifard N.J., Takdastan A., Ghafari S., Rostami S., Ahmadi M. Development of salt-tolerant microbial consortium during the treatment of saline bisphenol A-containing wastewater: Removal mechanisms and microbial characterization. J. Water Process Eng. 2019;32:100949. doi: 10.1016/j.jwpe.2019.100949. DOI
Tang S., Xu L., Yu X., Chen S., Li H., Huang Y., Niu J. Degradation of anticancer drug capecitabine in aquatic media by three advanced oxidation processes: Mechanisms, toxicity changes and energy cost evaluation. Chem. Eng. J. 2020;413:127489. doi: 10.1016/j.cej.2020.127489. DOI
Vieira W.T., de Farias M.B., Spaolonzi M.P., da Silva M.G.C., Vieira M.G.A. Latest advanced oxidative processes applied for the removal of endocrine disruptors from aqueous media—A critical report. J. Environ. Chem. Eng. 2021;9:105748. doi: 10.1016/j.jece.2021.105748. DOI
Stefanakis A.I. Waste Management: Concepts, Methodologies, Tools, and Applications. IGI Global; Hershey, PA, USA: 2020. Constructed wetlands: Description and benefits of an eco-tech water treatment system; pp. 503–525. DOI
Vymazal J., Zhao Y., Mander Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021;169:106318. doi: 10.1016/j.ecoleng.2021.106318. DOI
Raphael O.D., Ojo S.I.A., Ogedengbe K., Eghobamien C., Morakinyo A.O. Comparison of the performance of horizontal and vertical flow constructed wetland planted with Rhynchospora corymbosa. Int. J. Phytoremediat. 2019;21:152–159. doi: 10.1080/15226514.2018.1488809. PubMed DOI
Sánchez M., Ruiz I., Soto M. The Potential of Constructed Wetland Systems and Photodegradation Processes for the Removal of Emerging Contaminants—A Review. Environments. 2022;9:116. doi: 10.3390/environments9090116. DOI
Ávila C., Reyes C., Bayona J.M., García J. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: Influence of redox. Water Res. 2013;47:315–325. doi: 10.1016/j.watres.2012.10.005. PubMed DOI
Ilyas H., Masih I., van Hullebusch E.D. Pharmaceuticals’ removal by constructed wetlands: A critical evaluation and meta-analysis on performance, risk reduction, and role of physicochemical properties on removal mechanisms. J. Water Health. 2020;18:253–291. doi: 10.2166/wh.2020.213. PubMed DOI
Zhu W.-L., Cui L.-H., Ouyang Y., Long C.-F., Tang X.-D. Kinetic Adsorption of Ammonium Nitrogen by Substrate Materials for Constructed Wetlands. Pedosphere. 2011;21:454–463. doi: 10.1016/S1002-0160(11)60147-1. DOI
Yang Y., Zhao Y., Liu R., Morgan D. Global development of various emerged substrates utilized in constructed wetlands. Bioresour. Technol. 2018;261:441–452. doi: 10.1016/j.biortech.2018.03.085. PubMed DOI
Gwenzi W., Chaukura N., Noubactep C., Mukome F.N. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017;197:732–749. doi: 10.1016/j.jenvman.2017.03.087. PubMed DOI
Mlih R., Bydalek F., Klumpp E., Yaghi N., Bol R., Wenk J. Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands—A review. Ecol. Eng. 2020;148:105783. doi: 10.1016/j.ecoleng.2020.105783. DOI
Zhong H., Hu N., Wang Q., Chen Y., Huang L. How to select substrate for alleviating clogging in the subsurface flow constructed wetland? Sci. Total Environ. 2022;828:154529. doi: 10.1016/j.scitotenv.2022.154529. PubMed DOI
Sghaier T., Garchi S., Azizi T. Modélisation de la croissance et de la production du liège en Tunisie. Bois Trop. 2020;346:3–20. doi: 10.19182/bft2020.346.a31805. DOI
Campos J.M., Queiroz S.C., Roston D.M. Removal of the endocrine disruptors ethinyl estradiol, bisphenol A, and levonorgestrel by subsurface constructed wetlands. Sci. Total Environ. 2019;693:133514. doi: 10.1016/j.scitotenv.2019.07.320. PubMed DOI
Environment Protection: Use of Reclaimed Water for Agricultural Purposes (Physical, Chemical and Biological Specifications) Institut National de la Normalisation et de la Propriete Industrielle (INNORPI); Tunis, Tunisia: 1989. Tunisian Standards. (In French)
Regulation (EU) 2020/741 of the European Parliament on the Minimum Requirements for Water Reuse Official Journal of the European Union. 2020. [(accessed on 22 April 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741&from=EN.
U.S. Environmental Protection Agency (EPA) Guidelines for Water Reuse 2012. Environmental Protection Agency; Washington, DC, USA: 2012. A/600/R-12/618.
Vymazal J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013;61:582–592. doi: 10.1016/j.ecoleng.2013.06.023. DOI
Ben Sghaier R., Net S., Ghorbel-Abid I., Bessadok S., Le Coz M., Ben Hassan-Chehimi D., Trabelsi-Ayadi M., Tackx M., Ouddane B. Simultaneous Detection of 13 Endocrine Disrupting Chemicals in Water by a Combination of SPE-BSTFA Derivatization and GC-MS in Transboundary Rivers (France-Belgium) Water Air Soil Pollut. 2016;228:2. doi: 10.1007/s11270-016-3195-2. DOI
Dordio A.V., Gonçalves P., Texeira D., Candeias A.J., Castanheiro J.E., Pinto A.P., Carvalho A.P. Pharmaceuticals sorption behaviour in granulated cork for the selection of a support matrix for a constructed wetlands system. Int. J. Environ. Anal. Chem. 2011;91:615–631. doi: 10.1080/03067319.2010.510605. DOI
Pereira H. The Rationale behind Cork Properties: A Review of Structure and Chemistry. Bioresources. 2015;10:6207–6229. doi: 10.15376/biores.10.3.Pereira. DOI
Pirozzi C., Pontoni L., Fabbricino M., Bogush A., Campos L.C. Effect of organic matter release from natural cork used on bisphenol a removal from aqueous solution. J. Clean. Prod. 2019;244:118675. doi: 10.1016/j.jclepro.2019.118675. DOI
Wu H., Zhang J., Ngo H.H., Guo W., Hu Z., Liang S., Fan J., Liu H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2014;175:594–601. doi: 10.1016/j.biortech.2014.10.068. PubMed DOI
Elfanssi S., Ouazzani N., Latrach L., Hejjaj A., Mandi L. Phytoremediation of domestic wastewater using a hybrid constructed wetland in mountainous rural area. Int. J. Phytoremediat. 2018;20:75–87. doi: 10.1080/15226514.2017.1337067. PubMed DOI
Kraiem K., Kallali H., Wahab M.A., Fra-Vazquez A., Mosquera-Corral A., Jedidi N. Comparative study on pilots between ANAMMOX favored conditions in a partially saturated vertical flow constructed wetland and a hybrid system for rural wastewater treatment. Sci. Total Environ. 2019;670:644–653. doi: 10.1016/j.scitotenv.2019.03.220. PubMed DOI
Sanjrani M.A., Zhou B., Zhao H., Zheng Y.P., Wang Y., Xia S.B. The Influence of Wetland Media in Improving the Performance of Pollutant Removal during Water Treatment: A Review. Appl. Ecol. Environ. Res. 2019;17:3803–3818. doi: 10.15666/aeer/1702_38033818. DOI
Toscano A., Marzo A., Milani M., Cirelli G.L., Barbagallo S. Comparison of removal efficiencies in Mediterranean pilot constructed wetlands vegetated with different plant species. Ecol. Eng. 2015;75:155–160. doi: 10.1016/j.ecoleng.2014.12.005. DOI
Caselles-Osorio A., Vega H., Lancheros J.C., Casierra-Martínez H.A., Mosquera J.E. Horizontal subsurface-flow constructed wetland removal efficiency using Cyperus articulatus L. Ecol. Eng. 2017;99:479–485. doi: 10.1016/j.ecoleng.2016.11.062. DOI
Jamwal P., Raj A.V., Raveendran L., Shirin S., Connelly S., Yeluripati J., Richards S., Rao L., Helliwell R., Tamburini M. Evaluating the performance of horizontal sub-surface flow constructed wetlands: A case study from southern India. Ecol. Eng. 2021;162:106170. doi: 10.1016/j.ecoleng.2021.106170. DOI
Xu Q., Cui L. Removal of COD from synthetic wastewater in vertical flow constructed wetland. Water Environ. Res. 2019;91:1661–1668. doi: 10.1002/wer.1168. PubMed DOI
Fu X., Hou R., Yang P., Qian S., Feng Z., Chen Z., Wang F., Yuan R., Chen H., Zhou B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total Environ. 2022;817:153061. doi: 10.1016/j.scitotenv.2022.153061. PubMed DOI
Timotewos M.T., Kassa K., Reddythota D. Selection of mesocosm to remove nutrients with constructed wetlands. J. Ecol. Eng. 2017;18:42–51. doi: 10.12911/22998993/74397. DOI
Barbagallo S., Cirelli G.L., Marzo A., Milani M., Toscano A. Effect of different plant species in pilot constructed wetlands for wastewater reuse in agriculture. J. Agric. Eng. 2013;44:796–802. doi: 10.4081/jae.2013.402. DOI
Abed S.N. Effect of Wastewater Quality on the Performance of Constructed Wetland in an Arid Region Birzeit University. 2012. [(accessed on 10 June 2022)]. Available online: https://iews.birzeit.edu/sites/default/files/theses/TD756.5.A24%202012%20shereen%20abed.pdf.
Akratos C.S., Tsihrintzis V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2006;29:173–191. doi: 10.1016/j.ecoleng.2006.06.013. DOI
Ballesteros F., Vuong T.H., Secondes M.F., Tuan P.D. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene. Sustain. Environ. Res. 2016;26:93–96. doi: 10.1016/j.serj.2015.10.002. DOI
Vymazal J. Constructed Wetlands for Wastewater Treatment. Water. 2010;2:530–549. doi: 10.3390/w2030530. DOI
Xu D., Ling H., Li Z., Li Y., Chen R., Cai S., Gao B. Treatment of Ammonium-Nitrogen–Contaminated Groundwater by Tidal Flow Constructed Wetlands Using Different Substrates: Evaluation of Performance and Microbial Nitrogen Removal Pathways. Water Air Soil Pollut. 2022;233:159. doi: 10.1007/s11270-022-05633-6. DOI
Nguyen X.C., Tran T.P., Hoang V.H., Nguyen T.P., Chang S.W., Nguyen D.D., Guo W., Kumar A., La D.D., Bach Q.-V. Combined biochar vertical flow and free-water surface constructed wetland system for dormitory sewage treatment and reuse. Sci. Total Environ. 2020;713:136404. doi: 10.1016/j.scitotenv.2019.136404. PubMed DOI
Pintor A.M.A., Ferreira C.I.A., Pereira J.C., Correia P., Silva S.P., Vilar V.J.P., Botelho C.M.S., Boaventura R.A.R. Use of cork powder and granules for the adsorption of pollutants: A review. Water Res. 2012;46:3152–3166. doi: 10.1016/j.watres.2012.03.048. PubMed DOI
Yousaf A., Khalid N., Aqeel M., Noman A., Naeem N., Sarfraz W., Ejaz U., Qaiser Z., Khalid A. Nitrogen Dynamics in Wetland Systems and Its Impact on Biodiversity. Nitrogen. 2021;2:196–217. doi: 10.3390/nitrogen2020013. DOI
Minakshi D., Sharma P.K., Rani A. Effect of filter media and hydraulic retention time on the performance of vertical constructed wetland system treating dairy farm wastewater. Environ. Eng. Res. 2021;27:200436. doi: 10.4491/eer.2020.436. DOI
Carrasco-Acosta M., Garcia-Jimenez P., Herrera-Melián J.A., Peñate-Castellano N., Rivero-Rosales A. The Effects of Plants on Pollutant Removal, Clogging, and Bacterial Community Structure in Palm Mulch-Based Vertical Flow Constructed Wetlands. Sustainability. 2019;11:632. doi: 10.3390/su11030632. DOI
Foladori P., Ruaben J., Ortigara A.R. Recirculation or artificial aeration in vertical flow constructed wetlands: A comparative study for treating high load wastewater. Bioresour. Technol. 2013;149:398–405. doi: 10.1016/j.biortech.2013.09.099. PubMed DOI
Li Y.H., Zhu J.N., Liu Q.F., Liu Y., Liu M., Liu L., Zhang Q. Comparison of the diversity of root-associated bacteria in Phragmites australis and Typha angustifolia L. in artificial wetlands. World J. Microbiol. Biotechnol. 2013;29:1499–1508. doi: 10.1007/s11274-013-1316-2. PubMed DOI
Dan A., Fujii D., Soda S., Machimura T., Ike M. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. Sci. Total Environ. 2017;578:566–576. doi: 10.1016/j.scitotenv.2016.10.232. PubMed DOI
Ruppelt J.P., Pinnekamp J., Tondera K. Elimination of micropollutants in four test-scale constructed wetlands treating combined sewer overflow: Influence of filtration layer height and feeding regime. Water Res. 2019;169:115214. doi: 10.1016/j.watres.2019.115214. PubMed DOI
Wang Y., Yin T., Kelly B.C., Gin K.Y.-H. Bioaccumulation behaviour of pharmaceuticals and personal care products in a constructed wetland. Chemosphere. 2019;222:275–285. doi: 10.1016/j.chemosphere.2019.01.116. PubMed DOI
Ávila C., Nivala J., Olsson L., Kassa K., Headley T., Mueller R.A., Bayona J.M., García J. Emerging organic contaminants in vertical subsurface flow constructed wetlands: Influence of media size, loading frequency and use of active aeration. Sci. Total Environ. 2014;494–495:211–217. doi: 10.1016/j.scitotenv.2014.06.128. PubMed DOI
Toro-Vélez A., Madera-Parra C., Peña-Varón M., Lee W., Cruz J.B., Walker W., Cárdenas-Henao H., Quesada-Calderón S., García-Hernández H., Lens P. BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Sci. Total Environ. 2016;542:93–101. doi: 10.1016/j.scitotenv.2015.09.154. PubMed DOI
Papaevangelou V.A., Gikas G.D., Tsihrintzis V.A., Antonopoulou M., Konstantinou I.K. Removal of Endocrine Disrupting Chemicals in HSF and VF pilot-scale constructed wetlands. Chem. Eng. J. 2016;294:146–156. doi: 10.1016/j.cej.2016.02.103. DOI
Carranza-Diaz O., Schultze-Nobre L., Moeder M., Nivala J., Kuschk P., Koeser H. Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecol. Eng. 2014;71:234–245. doi: 10.1016/j.ecoleng.2014.07.048. DOI
Ilyas H., van Hullebusch E.D. Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: A review. Environ. Sci. Pollut. Res. 2020;27:14342–14364. doi: 10.1007/s11356-020-08165-w. PubMed DOI
Zhang D.Q., Tan S.K., Gersberg R.M., Sadreddini S., Zhu J., Tuan N.A. Removal of pharmaceutical compounds in tropical constructed wetlands. Ecol. Eng. 2011;37:460–464. doi: 10.1016/j.ecoleng.2010.11.002. DOI
Zhang H., Zheng Y., Wang X.C., Zhang Q., Dzakpasu M. Photochemical behavior of constructed wetlands-derived dissolved organic matter and its effects on Bisphenol A photodegradation in secondary treated wastewater. Sci. Total Environ. 2022;845:157300. doi: 10.1016/j.scitotenv.2022.157300. PubMed DOI
Mathon B., Coquery M., Miège C., Vandycke A., Choubert J.-M. Influence of water depth and season on the photodegradation of micropollutants in a free-water surface constructed wetland receiving treated wastewater. Chemosphere. 2019;235:260–270. doi: 10.1016/j.chemosphere.2019.06.140. PubMed DOI
Olivella M., Bazzicalupi C., Bianchi A., Fiol N., Villaescusa I. New insights into the interactions between cork chemical components and pesticides. The contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Chemosphere. 2015;119:863–870. doi: 10.1016/j.chemosphere.2014.08.051. PubMed DOI
Mallek M., Chtourou M., Portillo M., Monclús H., Walha K., ben Salah A., Salvadó V. Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J. Environ. Manag. 2018;223:576–585. doi: 10.1016/j.jenvman.2018.06.069. PubMed DOI