A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36672217
PubMed Central
PMC9856453
DOI
10.3390/cells12020281
PII: cells12020281
Knihovny.cz E-resources
- Keywords
- additive manufacturing, high-content screening (HCS), inflammation, multivariate analysis, nanoparticle emissions, new approach methodologies (NAMs), targeted metabolomics,
- MeSH
- Epithelial Cells MeSH
- Phenotype MeSH
- Humans MeSH
- Lipidomics * MeSH
- Metabolomics * MeSH
- Lung metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.
Centre for Applied Autonomous Sensor Systems Örebro University SE 701 82 Örebro Sweden
Department of Mechanical Engineering Örebro University SE 701 82 Örebro Sweden
Department of Neuroscience Karolinska Institutet SE 171 77 Stockholm Sweden
Faculty of Medicine and Health School of Medical Sciences Örebro University SE 701 82 Örebro Sweden
Institute of Microbiology of the Czech Academy of Sciences 140 00 Prague Czech Republic
Man Technology Environment Research Center Örebro University SE 701 82 Örebro Sweden
See more in PubMed
Wong K.V., Hernandez A. A review of additive manufacturing. Int. Sch. Res. Not. 2012;2012:208760. doi: 10.5402/2012/208760. DOI
Kumar S.P., Elangovan S., Mohanraj R., Ramakrishna J.R. Review on the evolution and technology of State-of-the-Art metal additive manufacturing processes. Mater. Today Proc. 2021;46:7907–7920. doi: 10.1016/j.matpr.2021.02.567. DOI
Alijagic A., Scherbak N., Kotlyar O., Karlsson P., Persson A., Hedbrant A., Norinder U., Larsson M., Felth J., Andersson L., et al. Cell Painting unveils cell response signatures to (nano) particles formed in additive manufacturing. Toxicol. Lett. 2022;368:S226–S227. doi: 10.1016/j.toxlet.2022.07.611. DOI
Alijagic A., Engwall M., Särndahl E., Karlsson H., Hedbrant A., Andersson L., Karlsson P., Dalemo M., Scherbak N., Färnlund K., et al. Particle safety assessment in additive manufacturing: From exposure risks to advanced toxicology testing. Front. Toxicol. 2022;4:836447. doi: 10.3389/ftox.2022.836447. PubMed DOI PMC
Runström Eden G., Tinnerberg H., Rosell L., Möller R., Almstrand A.C., Bredberg A. Exploring Methods for Surveillance of Occupational Exposure from Additive Manufacturing in Four Different Industrial Facilities. Ann. Work Expo. Health. 2022;66:163–177. doi: 10.1093/annweh/wxab070. PubMed DOI PMC
Vallabani N.S., Alijagic A., Persson A., Odnevall I., Särndahl E., Karlsson H.L. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models. Toxicology. 2022;467:153100. doi: 10.1016/j.tox.2022.153100. PubMed DOI
Hartung T., FitzGerald R.E., Jennings P., Mirams G.R., Peitsch M.C., Rostami-Hodjegan A., Shah I., Wilks M.F., Sturla S.J. Systems toxicology: Real world applications and opportunities. Chem. Res. Toxicol. 2017;3:870–882. doi: 10.1021/acs.chemrestox.7b00003. PubMed DOI PMC
Fröhlich E. Role of omics techniques in the toxicity testing of nanoparticles. J. Nanobiotechnol. 2017;15:84. doi: 10.1186/s12951-017-0320-3. PubMed DOI PMC
Nymark P., Bakker M., Dekkers S., Franken R., Fransman W., García-Bilbao A., Greco D., Gulumian M., Hadrup N., Halappanavar S., et al. Toward rigorous materials production: New approach methodologies have extensive potential to improve current safety assessment practices. Small. 2020;16:1904749. doi: 10.1002/smll.201904749. PubMed DOI
Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC
Bray M.A., Singh S., Han H., Davis C.T., Borgeson B., Hartland C., Kost-Alimova M., Gustafsdottir S.M., Gibson C.C., Carpenter A.E. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 2016;11:1757–1774. doi: 10.1038/nprot.2016.105. PubMed DOI PMC
Bakal C., Aach J., Church G., Perrimon N. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science. 2007;316:1753–1756. doi: 10.1126/science.1140324. PubMed DOI
Severin Y., Hale B.D., Mena J., Goslings D., Frey B.M., Snijder B. Multiplexed high-throughput immune cell imaging reveals molecular health-associated phenotypes. Sci. Adv. 2022;8:5631. doi: 10.1126/sciadv.abn5631. PubMed DOI PMC
Schneidewind T., Brause A., Pahl A., Burhop A., Mejuch T., Sievers S., Waldmann H., Ziegler S. Morphological profiling identifies a common mode of action for small molecules with different targets. ChemBioChem. 2020;21:3197–3207. doi: 10.1002/cbic.202000381. PubMed DOI PMC
Nyffeler J., Willis C., Lougee R., Richard A., Paul-Friedman K., Harrill J.A. Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicol. Appl. Pharmacol. 2020;389:114876. doi: 10.1016/j.taap.2019.114876. PubMed DOI PMC
Akbarzadeh M., Deipenwisch I., Schoelermann B., Pahl A., Sievers S., Ziegler S., Waldmann H. Morphological profiling by means of the Cell Painting assay enables identification of tubulin-targeting compounds. Cell Chem. Biol. 2021;29:1053–1064. doi: 10.1016/j.chembiol.2021.12.009. PubMed DOI
Schiff L., Migliori B., Chen Y., Carter D., Bonilla C., Hall J., Fan M., Tam E., Ahadi S., Fischbacher B., et al. Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts. Nat. Commun. 2022;13:1590. doi: 10.1038/s41467-022-28423-4. PubMed DOI PMC
Way G.P., Kost-Alimova M., Shibue T., Harrington W.F., Gill S., Piccioni F., Becker T., Shafqat-Abbasi H., Hahn W.C., Carpenter A.E., et al. Predicting cell health phenotypes using image-based morphology profiling. Mol. Biol. Cell. 2021;32:995–1005. doi: 10.1091/mbc.E20-12-0784. PubMed DOI PMC
Pahl A., Sievers S. The Cell Painting assay as a screening tool for the discovery of bioactivities in new chemical matter. In: Ziegler S., Waldmann H., editors. Systems Chemical Biology. Humana Press; New York, NY, USA: 2019. pp. 115–126. PubMed DOI
Rietdijk J., Tampere M., Pettke A., Georgiev P., Lapins M., Warpman-Berglund U., Spjuth O., Puumalainen M.R., Carreras-Puigvert J. A phenomics approach for antiviral drug discovery. BMC Biol. 2021;19:156. doi: 10.1186/s12915-021-01086-1. PubMed DOI PMC
Rietdijk J., Aggarwal T., Georgieva P., Lapins M., Carreras-Puigvert J., Spjuth O. Morphological profiling of environmental chemicals enables efficient and untargeted exploration of combination effects. Sci. Tot. Environ. 2022;832:155058. doi: 10.1016/j.scitotenv.2022.155058. PubMed DOI
Nassiri I., McCall M.N. Systematic exploration of cell morphological phenotypes associated with a transcriptomic query. Nucleic Acids Res. 2018;46:e116. doi: 10.1093/nar/gky626. PubMed DOI PMC
Ramirez T., Daneshian M., Kamp H., Bois F.Y., Clench M.R., Coen M., Donley B., Fischer S.M., Ekman D.R., Fabian E., et al. Metabolomics in toxicology and preclinical research. ALTEX. 2013;30:209–225. doi: 10.14573/altex.2013.2.209. PubMed DOI PMC
Ventura C., Torres V., Vieira L., Gomes B., Rodrigues A.S., Rueff J., Penque D., Silva M.J. New “Omics” Approaches as Tools to Explore Mechanistic Nanotoxicology. In: Louro H., Silva M.J., editors. Nanotoxicology in Safety Assessment of Nanomaterials. Advances in Experimental Medicine and Biology. Volume 1357. Springer; Berlin/Heidelberg, Germany: 2022. pp. 179–194. PubMed DOI
Halappanavar S., Van Den Brule S., Nymark P., Gaté L., Seidel C., Valentino S., Zhernovkov V., Høgh Danielsen P., De Vizcaya A., Wolff H., et al. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part. Fibre Toxicol. 2020;17:16. doi: 10.1186/s12989-020-00344-4. PubMed DOI PMC
Demokritou P., Kavouras I.G., Ferguson S.T., Koutrakis P. Development of a high volume cascade impactor for toxicological and chemical characterization studies. Aerosol Sci. Technol. 2022;36:925–933. doi: 10.1080/02786820290092113. DOI
Gatoo M.A., Naseem S., Arfat M.Y., Mahmood Dar A., Qasim K., Zubair S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res. Int. 2014;2014:498420. doi: 10.1155/2014/498420. PubMed DOI PMC
McCarrick S., Wei Z., Moelijker N., Derr R., Persson K.A., Hendriks G., Odnevall Wallinder I., Hedberg Y., Karlsson H.L. High variability in toxicity of welding fume nanoparticles from stainless steel in lung cells and reporter cell lines: The role of particle reactivity and solubility. Nanotoxicol. 2019;13:1293–1309. doi: 10.1080/17435390.2019.1650972. PubMed DOI
Gliga A.R., Skoglund S., Odnevall Wallinder I., Fadeel B., Karlsson H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014;11:11. doi: 10.1186/1743-8977-11-11. PubMed DOI PMC
Rahmati M., Silva E.A., Reseland J.E., Heyward C.A., Haugen H.J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 2020;49:5178–5224. doi: 10.1039/D0CS00103A. PubMed DOI
Liu Y., Yang Y., Mai S., Wang D., Song C. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater. Des. 2015;87:797–806. doi: 10.1016/j.matdes.2015.08.086. DOI
Simonelli M., Tuck C., Aboulkhair N.T., Maskery I., Ashcroft I., Wildman R.D., Hague R. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metall. Mater. Trans. 2015;46:3842–3851. doi: 10.1007/s11661-015-2882-8. DOI
Ly S., Rubenchik A.M., Khairallah S.A., Guss G., Matthews M.J. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Sci. Rep. 2017;7:4085. doi: 10.1038/s41598-017-04237-z. PubMed DOI PMC
Sutton A.T., Kriewall C.S., Leu M.C., Newkirk J.W., Brown B. Characterization of laser spatter and condensate generated during the selective laser melting of 304L stainless steel powder. Addit. Manuf. 2020;31:100904. doi: 10.1016/j.addma.2019.100904. DOI
Hedberg Y.S., Wei Z., McCarrick S., Romanovski V., Theodore J., Westin E.M., Wagner R., Persson K.A., Karlsson H.L., Odnevall Wallinder I. Welding fume nanoparticles from solid and flux-cored wires: Solubility, toxicity, and role of fluorides. J. Haz. Mat. 2021;413:125273. doi: 10.1016/j.jhazmat.2021.125273. PubMed DOI
Schwarz H., Schmittner M., Duschl A., Horejs-Hoeck J. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PloS ONE. 2014;9:e113840. doi: 10.1371/journal.pone.0113840. PubMed DOI PMC
Oostingh G.J., Casals E., Italiani P., Colognato R., Stritzinger R., Ponti J., Pfaller T., Kohl Y., Ooms D., Favilli F., et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part. Fibre Toxicol. 2011;8:8. doi: 10.1186/1743-8977-8-8. PubMed DOI PMC
Li Y., Boraschi D. Endotoxin contamination: A key element in the interpretation of nanosafety studies. Nanomedicine. 2016;11:269–287. doi: 10.2217/nnm.15.196. PubMed DOI
Li Y., Italiani P., Casals E., Tran N., Puntes V.F., Boraschi D. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles. Nanotoxicology. 2015;9:462–473. doi: 10.3109/17435390.2014.948090. PubMed DOI
Longhin E.M., El Yamani N., Rundén-Pran E., Dusinska M. The alamar blue assay in the context of safety testing of nanomaterials. Front. Toxicol. 2022;4:981701. doi: 10.3389/ftox.2022.981701. PubMed DOI PMC
Paunovic J., Vucevic D., Radosavljevic T., Mandić-Rajčević S., Pantic I. Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chem. Biol. Interact. 2020;316:108935. doi: 10.1016/j.cbi.2019.108935. PubMed DOI
Cappellini F., Hedberg Y., McCarrick S., Hedberg J., Derr R., Hendriks G., Odnevall Wallinder I., Karlsson H.L. Mechanistic insight into reactivity and (geno) toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology. 2018;12:602–620. doi: 10.1080/17435390.2018.1470694. PubMed DOI
Latvala S., Hedberg J., Di Bucchianico S., Möller L., Odnevall Wallinder I., Elihn K., Karlsson H.L. Nickel release, ROS generation and toxicity of Ni and NiO micro-and nanoparticles. PloS ONE. 2016;11:e0159684. doi: 10.1371/journal.pone.0159684. PubMed DOI PMC
Nel A., Xia T., Madler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI
Hendriks G., Derr R.S., Misovic B., Morolli B., Calleja F.M., Vrieling H. The extended ToxTracker assay discriminates between induction of DNA damage, oxidative stress, and protein misfolding. Toxicol. Sci. 2016;150:190–203. doi: 10.1093/toxsci/kfv323. PubMed DOI PMC
Hendriks G., Atallah M., Morolli B., Calléja F., Ras-Verloop N., Huijskens I., Raamsman M., van de Water B., Vrieling H. The ToxTracker assay: Novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals. Toxicol. Sci. 2012;125:285–298. doi: 10.1093/toxsci/kfr281. PubMed DOI
McCarrick S., Cappellini F., Kessler A., Moelijker N., Derr R., Hedberg J., Wold S., Blomberg E., Odnevall Wallinder I., Hendriks G., et al. ToxTracker reporter cell lines as a tool for mechanism-based (geno) toxicity screening of nanoparticles—Metals, oxides and quantum dots. Nanomaterials. 2020;10:110. doi: 10.3390/nano10010110. PubMed DOI PMC
Fernandes J., Hao L., Bijli K.M., Chandler J.D., Orr M., Hu X., Jones D.P., Go Y.M. From the cover: Manganese stimulates mitochondrial H2O2 production in SH-SY5Y human neuroblastoma cells over physiologic as well as toxicologic range. Toxicol. Sci. 2017;155:213–223. doi: 10.1093/toxsci/kfw196. PubMed DOI PMC
Smith M.R., Fernandes J., Go Y.M., Jones D.P. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem. Biophys. Res. Comm. 2017;482:388–398. doi: 10.1016/j.bbrc.2016.10.126. PubMed DOI PMC
Pfalzer A.C., Bowman A.B. Relationships between essential manganese biology and manganese toxicity in neurological disease. Curr. Environ. Health Rep. 2017;4:223–228. doi: 10.1007/s40572-017-0136-1. PubMed DOI PMC
Yang Y., Bazhin A.V., Werner J., Karakhanova S. Reactive oxygen species in the immune system. Int. Rev. Immunol. 2013;32:249–270. doi: 10.3109/08830185.2012.755176. PubMed DOI
Kroll A., Pillukat M.H., Hahn D., Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012;86:1123–1136. doi: 10.1007/s00204-012-0837-z. PubMed DOI
Zhao J., Riediker M. Detecting the oxidative reactivity of nanoparticles: A new protocol for reducing artifacts. J. Nanopart. Res. 2014;16:2493. doi: 10.1007/s11051-014-2493-0. PubMed DOI PMC
Pandey N.K., Xiong W., Wang L., Chen W., Bui B., Yang J., Amador E., Chen M., Xing C., Athavale A.A., et al. Aggregation-induced emission luminogens for highly effective microwave dynamic therapy. Bioact. Mater. 2022;7:112–125. doi: 10.1016/j.bioactmat.2021.05.031. PubMed DOI PMC
Novak P., Shevchuk A., Ruenraroengsak P., Miragoli M., Thorley A.J., Klenerman D., Lab M.J., Tetley T.D., Gorelik J., Korchev Y.E. Imaging single nanoparticle interactions with human lung cells using fast ion conductance microscopy. Nano Lett. 2014;14:1202–1207. doi: 10.1021/nl404068p. PubMed DOI
Lamb J., Crawford E.D., Peck D., Modell J.W., Blat I.C., Wrobel M.J., Lerner J., Brunet J.P., Subramanian A., Ross K.N., et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–1935. doi: 10.1126/science.1132939. PubMed DOI
Gustafsdottir S.M., Ljosa V., Sokolnicki K.L., Anthony Wilson J., Walpita D., Kemp M.M., Petri Seiler K., Carrel H.A., Golub T.R., Schreiber S.L., et al. Multiplex cytological profiling assay to measure diverse cellular states. PloS ONE. 2013;8:e80999. doi: 10.1371/journal.pone.0080999. PubMed DOI PMC
Caicedo J.C., Arevalo J., Piccioni F., Bray M.A., Hartland C.L., Wu X., Brooks A.N., Berger A.H., Boehm J.S., Carpenter A.E., et al. Cell Painting predicts impact of lung cancer variants. Mol. Biol. Cell. 2022;33:mbc-E21. doi: 10.1091/mbc.E21-11-0538. PubMed DOI PMC
de Almeida M.S., Susnik E., Drasler B., Taladriz-Blanco P., Petri-Fink A., Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 2021;50:5397–5434. doi: 10.1039/D0CS01127D. PubMed DOI PMC
Buyukhatipoglu K., Clyne A.M. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. A. 2011;96:186–195. doi: 10.1002/jbm.a.32972. PubMed DOI
Ispanixtlahuatl-Meráz O., Schins R.P., Chirino Y.I. Cell type specific cytoskeleton disruption induced by engineered nanoparticles. Environ. Sci. Nano. 2018;5:228–245. doi: 10.1039/C7EN00704C. DOI
Déciga-Alcaraz A., Delgado-Buenrostro N.L., Ispanixtlahuatl-Meráz O., Freyre-Fonseca V., Flores-Flores J.O., Ganem-Rondero A., Vaca-Paniagua F., del Pilar Ramos-Godinez M., Morales-Barcenas R., Sánchez-Pérez Y., et al. Irreversible disruption of the cytoskeleton as induced by non-cytotoxic exposure to titanium dioxide nanoparticles in lung epithelial cells. Chem. Biol. Interact. 2020;323:109063. doi: 10.1016/j.cbi.2020.109063. PubMed DOI
Wulf E., Deboben A., Bautz F.A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA. 1979;76:4498–4502. doi: 10.1073/pnas.76.9.4498. PubMed DOI PMC
Zhang X., Zhang H., Liang X., Zhang J., Tao W., Zhu X., Chang D., Zeng X., Liu G., Mei L. Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: Lysosome impairment, mitochondrial damage, and ER stress. Mol. Pharm. 2016;13:2578–2587. doi: 10.1021/acs.molpharmaceut.6b00405. PubMed DOI
Peng T.I., Jou M.J. Mitochondrial swelling and generation of reactive oxygen species induced by photoirradiation are heterogeneously distributed. In: Lee H.K., DiMauro S., Tanaka M., Wei Y.H., editors. Mitochondrial Pathogenesis. Springer; Berlin/Heidelberg, Germany: 2004. pp. 112–122. PubMed DOI
Li D.W., He H., Lin B.B., Xu Z.Q., Jiang F.L., Liu Y. Studies on the isolated mitochondrial damage induced by α-tocopheryl succinate and its interactions with human serum albumin. RSC Adv. 2014;4:3913–3919. doi: 10.1039/C3RA46172F. DOI
Barkhade T., Mahapatra S.K., Banerjee I. Study of mitochondrial swelling, membrane fluidity and ROS production induced by nano-TiO2 and prevented by Fe incorporation. Toxicol. Res. 2019;8:711–722. doi: 10.1039/c9tx00143c. PubMed DOI PMC
Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC
Ahlinder L., Ekstrand-Hammarström B., Geladi P., Österlund L. Large uptake of titania and iron oxide nanoparticles in the nucleus of lung epithelial cells as measured by Raman imaging and multivariate classification. Biophys. J. 2013;105:310–319. doi: 10.1016/j.bpj.2013.06.017. PubMed DOI PMC
Kuznetsov A.V., Margreiter R., Ausserlechner M.J., Hagenbuchner J. The Complex Interplay between Mitochondria, ROS and Entire Cellular Metabolism. Antioxidants. 2022;11:1995. doi: 10.3390/antiox11101995. PubMed DOI PMC
Seal S., Carreras-Puigvert J., Trapotsi M.A., Yang H., Spjuth O., Bender A. Integrating cell morphology with gene expression and chemical structure to aid mitochondrial toxicity detection. bioRxiv. 2022 doi: 10.1038/s42003-022-03763-5. PubMed DOI PMC
Stern S.T., Adiseshaiah P.P., Crist R.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 2012;9:20. doi: 10.1186/1743-8977-9-20. PubMed DOI PMC
Moghadam B.Y., Hou W.C., Corredor C., Westerhoff P., Posner J.D. Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir. 2012;28:16318–16326. doi: 10.1021/la302654s. PubMed DOI PMC
Wei X., Jiang W., Yu J., Ding L., Hu J., Jiang G. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. J. Haz. Mat. 2015;287:217–224. doi: 10.1016/j.jhazmat.2015.01.063. PubMed DOI
Sinclair W.E., Chang H.H., Dan A., Kenis P.J., Murphy C.J., Leckband D.E. Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers. Sci. Rep. 2020;10:13320. doi: 10.1038/s41598-020-70148-1. PubMed DOI PMC
Bereiter-Hahn J., Vöth M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 1994;27:198–219. doi: 10.1002/jemt.1070270303. PubMed DOI
Fenton A.R., Jongens T.A., Holzbaur E.L. Mitochondrial dynamics: Shaping and remodeling an organelle network. Curr. Opin. Cell Biol. 2021;68:28–36. doi: 10.1016/j.ceb.2020.08.014. PubMed DOI PMC
McInnes L., Healy J., Melville J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv. 2018 doi: 10.48550/arXiv.1802.03426. DOI
Kensert A., Harrison P.J., Spjuth O. Transfer learning with deep convolutional neural networks for classifying cellular morphological changes. SLAS Discov. 2019;24:466–475. doi: 10.1177/2472555218818756. PubMed DOI PMC
Seal S., Yang H., Vollmers L., Bender A. Comparison of cellular morphological descriptors and molecular fingerprints for the prediction of cytotoxicity-and proliferation-related assays. Chem. Res. Toxicol. 2021;34:422–437. doi: 10.1021/acs.chemrestox.0c00303. PubMed DOI
Yeung T., Ozdamar B., Paroutis P., Grinstein S. Lipid metabolism and dynamics during phagocytosis. Curr. Opin. Cell Biol. 2006;18:429–437. doi: 10.1016/j.ceb.2006.06.006. PubMed DOI
Li N., Sancak Y., Frasor J., Atilla-Gokcumen G.E. A protective role for triacylglycerols during apoptosis. Biochemistry. 2018;57:72–80. doi: 10.1021/acs.biochem.7b00975. PubMed DOI PMC
Soria N.C., Aga D.S., Atilla-Gokcumen G.E. Lipidomics reveals insights on the biological effects of copper oxide nanoparticles in a human colon carcinoma cell line. Mol. Omics. 2019;15:30–38. doi: 10.1039/C8MO00162F. PubMed DOI
Chiurchiù V., Leuti A., Maccarrone M. Bioactive lipids and chronic inflammation: Managing the fire within. Front. Immunol. 2018;9:38. doi: 10.3389/fimmu.2018.00038. PubMed DOI PMC
Vogel A., Brunner J.S., Hajto A., Sharif O., Schabbauer G. Lipid scavenging macrophages and inflammation. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids. 2022;1867:159066. doi: 10.1016/j.bbalip.2021.159066. PubMed DOI
Wang G., Zhang X., Liu X., Zheng J. Co-culture of human alveolar epithelial (A549) and macrophage (THP-1) cells to study the potential toxicity of ambient PM2. 5: A comparison of growth under ALI and submerged conditions. Toxicol. Res. 2020;9:636–651. doi: 10.1093/toxres/tfaa072. PubMed DOI PMC
Li X.B., Zheng H., Zhang Z.R., Li M., Huang Z.Y., Schluesener H.J., Li Y.Y., Xu S.Q. Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomed. Nanotechnol. Biol. Med. 2009;5:473–479. doi: 10.1016/j.nano.2009.01.013. PubMed DOI
Bhattacharya K., Davoren M., Boertz J., Schins R.P., Hoffmann E., Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part. Fibre Toxicol. 2009;6:17. doi: 10.1186/1743-8977-6-17. PubMed DOI PMC
Barelli H., Antonny B. Lipid unsaturation and organelle dynamics. Curr. Opin. Cell Biol. 2016;41:25–32. doi: 10.1016/j.ceb.2016.03.012. PubMed DOI
Himly M., Geppert M., Hofer S., Hofstätter N., Horejs-Höck J., Duschl A. When would immunologists consider a nanomaterial to be safe? Recommendations for planning studies on nanosafety. Small. 2020;16:1907483. doi: 10.1002/smll.201907483. PubMed DOI
Boraschi D., Alijagic A., Auguste M., Barbero F., Ferrari E., Hernadi S., Mayall C., Michelini S., Navarro Pacheco N.I., Prinelli A., et al. Addressing nanomaterial immunosafety by evaluating innate immunity across living species. Small. 2020;16:2000598. doi: 10.1002/smll.202000598. PubMed DOI
Zhang Q., Guo X., Cheng Y., Chudal L., Pandey N.K., Zhang J., Ma L., Xi Q., Yang G., Chen Y., et al. Use of copper-cysteamine nanoparticles to simultaneously enable radiotherapy, oxidative therapy and immunotherapy for melanoma treatment. Signal Transduct. Target. Ther. 2020;5:58. doi: 10.1038/s41392-020-0156-4. PubMed DOI PMC
Dominissini D., Moshitch-Moshkovitz S., Schwartz S., Salmon-Divon M., Ungar L., Osenberg S., Cesarkas K., Jacob-Hirsch J., Amariglio N., Kupiec M., et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–206. doi: 10.1038/nature11112. PubMed DOI
Luo J., Xu T., Sun K. N6-methyladenosine RNA modification in inflammation: Roles, mechanisms, and applications. Front. Cell Dev. Biol. 2021;9:670711. doi: 10.3389/fcell.2021.670711. PubMed DOI PMC
Gu X., Zhang Y., Li D., Cai H., Cai L., Xu Q. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell. Signal. 2020;69:109553. doi: 10.1016/j.cellsig.2020.109553. PubMed DOI
Hardbower D.M., Asim M., Luis P.B., Singh K., Barry D.P., Yang C., Steeves M.A., Cleveland J.L., Schneider C., Piazuelo M.B., et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc. Natl. Acad. Sci. USA. 2017;114:E751–E760. doi: 10.1073/pnas.1614958114. PubMed DOI PMC
Rath M., Müller I., Kropf P., Closs E.I., Munder M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 2014;5:532. doi: 10.3389/fimmu.2014.00532. PubMed DOI PMC
Marrocco A., Frawley K., Pearce L.L., Peterson J., O’Brien J.P., Mullett S.J., Wendell S.G., St Croix C.M., Mischler S.E., Ortiz L.A. Metabolic Adaptation of Macrophages as Mechanism of Defense against Crystalline Silica. J. Immunol. 2021;207:1627–1640. doi: 10.4049/jimmunol.2000628. PubMed DOI PMC
Rodriguez A.E., Ducker G.S., Billingham L.K., Martinez C.A., Mainolfi N., Suri V., Friedman A., Manfredi M.G., Weinberg S.E., Rabinowitz J.D., et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 2019;29:1003–1011. doi: 10.1016/j.cmet.2019.01.014. PubMed DOI PMC
Benada O., Pokorný V. Modification of the Polaron sputter-coater unit for glow-discharge activation of carbon support films. J. Electron Microsc. Tech. 1990;16:235–239. doi: 10.1002/jemt.1060160304. PubMed DOI
United Nations The Globally Harmonized System of Classification and Labeling of Chemicals, Annex 10, Guidance Document on Transformation/Dissolution of Metals and Metal Compounds in Aqueous Media. [(accessed on 24 March 2022)]. Available online: https://unece.org/DAM/trans/danger/publi/ghs/ghs_rev07/English/13e_annex10.pdf.
Hedberg Y., Midander K., Odnevall Wallinder I. Particles, sweat, and tears: A comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact. Integr. Environ. Assess. Manag. 2010;6:456–468. doi: 10.1002/ieam.66. PubMed DOI
Mazinanian N., Hedberg Y., Odnevall Wallinder I. Nickel release and surface characteristics of fine powders of nickel metal and nickel oxide in media of relevance for inhalation and dermal contact. Regul. Toxicol. Pharmacol. 2013;65:135–146. doi: 10.1016/j.yrtph.2012.10.014. PubMed DOI
Hedberg Y.S., Odnevall Wallinder I. Metal release from stainless steel in biological environments: A review. Biointerphases. 2016;11:018901. doi: 10.1116/1.4934628. PubMed DOI
Wang X., Herting G., Wei Z., Odnevall Wallinder I., Hedberg Y. Bioaccessibility of nickel and cobalt in powders and massive forms of stainless steel, nickel-or cobalt-based alloys, and nickel and cobalt metals in artificial sweat. Regul. Toxicol. Pharmacol. 2019;106:15–26. doi: 10.1016/j.yrtph.2019.04.017. PubMed DOI
Stirling D.R., Swain-Bowden M.J., Lucas A.M., Carpenter A.E., Cimini B.A., Goodman A. CellProfiler 4: Improvements in speed, utility and usability. BMC Bioinform. 2021;22:433. doi: 10.1186/s12859-021-04344-9. PubMed DOI PMC
Way G. Blocklist Features—Cell Profiler. 2019. [(accessed on 24 March 2022)]. Available online: DOI
Behdenna A., Haziza J., Azencott C.A., Nordor A. pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods. bioRxiv. 2020 doi: 10.1101/2020.03.17.995431. PubMed DOI PMC
Johnson W.E., Li C., Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–127. doi: 10.1093/biostatistics/kxj037. PubMed DOI
Chung D., Keleş S. Sparse partial least squares classification for high dimensional data. Stat. Appl. Genet. Mol. Biol. 2010;9:17. doi: 10.2202/1544-6115.1492. PubMed DOI PMC
Chung D., Chun H., Keleş S. Spls: Sparse partial least squares (SPLS) regression and classification. In R Package, Version 2; 2012
Pluskal T., Castillo S., Villar-Briones A., Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC
Pang Z., Chong J., Li S., Xia J. MetaboAnalystR 3.0: Toward an optimized workflow for global metabolomics. Metabolites. 2020;10:186. doi: 10.3390/metabo10050186. PubMed DOI PMC