• This record comes from PubMed

A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles

. 2023 Jan 11 ; 12 (2) : . [epub] 20230111

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.

See more in PubMed

Wong K.V., Hernandez A. A review of additive manufacturing. Int. Sch. Res. Not. 2012;2012:208760. doi: 10.5402/2012/208760. DOI

Kumar S.P., Elangovan S., Mohanraj R., Ramakrishna J.R. Review on the evolution and technology of State-of-the-Art metal additive manufacturing processes. Mater. Today Proc. 2021;46:7907–7920. doi: 10.1016/j.matpr.2021.02.567. DOI

Alijagic A., Scherbak N., Kotlyar O., Karlsson P., Persson A., Hedbrant A., Norinder U., Larsson M., Felth J., Andersson L., et al. Cell Painting unveils cell response signatures to (nano) particles formed in additive manufacturing. Toxicol. Lett. 2022;368:S226–S227. doi: 10.1016/j.toxlet.2022.07.611. DOI

Alijagic A., Engwall M., Särndahl E., Karlsson H., Hedbrant A., Andersson L., Karlsson P., Dalemo M., Scherbak N., Färnlund K., et al. Particle safety assessment in additive manufacturing: From exposure risks to advanced toxicology testing. Front. Toxicol. 2022;4:836447. doi: 10.3389/ftox.2022.836447. PubMed DOI PMC

Runström Eden G., Tinnerberg H., Rosell L., Möller R., Almstrand A.C., Bredberg A. Exploring Methods for Surveillance of Occupational Exposure from Additive Manufacturing in Four Different Industrial Facilities. Ann. Work Expo. Health. 2022;66:163–177. doi: 10.1093/annweh/wxab070. PubMed DOI PMC

Vallabani N.S., Alijagic A., Persson A., Odnevall I., Särndahl E., Karlsson H.L. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models. Toxicology. 2022;467:153100. doi: 10.1016/j.tox.2022.153100. PubMed DOI

Hartung T., FitzGerald R.E., Jennings P., Mirams G.R., Peitsch M.C., Rostami-Hodjegan A., Shah I., Wilks M.F., Sturla S.J. Systems toxicology: Real world applications and opportunities. Chem. Res. Toxicol. 2017;3:870–882. doi: 10.1021/acs.chemrestox.7b00003. PubMed DOI PMC

Fröhlich E. Role of omics techniques in the toxicity testing of nanoparticles. J. Nanobiotechnol. 2017;15:84. doi: 10.1186/s12951-017-0320-3. PubMed DOI PMC

Nymark P., Bakker M., Dekkers S., Franken R., Fransman W., García-Bilbao A., Greco D., Gulumian M., Hadrup N., Halappanavar S., et al. Toward rigorous materials production: New approach methodologies have extensive potential to improve current safety assessment practices. Small. 2020;16:1904749. doi: 10.1002/smll.201904749. PubMed DOI

Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC

Bray M.A., Singh S., Han H., Davis C.T., Borgeson B., Hartland C., Kost-Alimova M., Gustafsdottir S.M., Gibson C.C., Carpenter A.E. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 2016;11:1757–1774. doi: 10.1038/nprot.2016.105. PubMed DOI PMC

Bakal C., Aach J., Church G., Perrimon N. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science. 2007;316:1753–1756. doi: 10.1126/science.1140324. PubMed DOI

Severin Y., Hale B.D., Mena J., Goslings D., Frey B.M., Snijder B. Multiplexed high-throughput immune cell imaging reveals molecular health-associated phenotypes. Sci. Adv. 2022;8:5631. doi: 10.1126/sciadv.abn5631. PubMed DOI PMC

Schneidewind T., Brause A., Pahl A., Burhop A., Mejuch T., Sievers S., Waldmann H., Ziegler S. Morphological profiling identifies a common mode of action for small molecules with different targets. ChemBioChem. 2020;21:3197–3207. doi: 10.1002/cbic.202000381. PubMed DOI PMC

Nyffeler J., Willis C., Lougee R., Richard A., Paul-Friedman K., Harrill J.A. Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicol. Appl. Pharmacol. 2020;389:114876. doi: 10.1016/j.taap.2019.114876. PubMed DOI PMC

Akbarzadeh M., Deipenwisch I., Schoelermann B., Pahl A., Sievers S., Ziegler S., Waldmann H. Morphological profiling by means of the Cell Painting assay enables identification of tubulin-targeting compounds. Cell Chem. Biol. 2021;29:1053–1064. doi: 10.1016/j.chembiol.2021.12.009. PubMed DOI

Schiff L., Migliori B., Chen Y., Carter D., Bonilla C., Hall J., Fan M., Tam E., Ahadi S., Fischbacher B., et al. Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts. Nat. Commun. 2022;13:1590. doi: 10.1038/s41467-022-28423-4. PubMed DOI PMC

Way G.P., Kost-Alimova M., Shibue T., Harrington W.F., Gill S., Piccioni F., Becker T., Shafqat-Abbasi H., Hahn W.C., Carpenter A.E., et al. Predicting cell health phenotypes using image-based morphology profiling. Mol. Biol. Cell. 2021;32:995–1005. doi: 10.1091/mbc.E20-12-0784. PubMed DOI PMC

Pahl A., Sievers S. The Cell Painting assay as a screening tool for the discovery of bioactivities in new chemical matter. In: Ziegler S., Waldmann H., editors. Systems Chemical Biology. Humana Press; New York, NY, USA: 2019. pp. 115–126. PubMed DOI

Rietdijk J., Tampere M., Pettke A., Georgiev P., Lapins M., Warpman-Berglund U., Spjuth O., Puumalainen M.R., Carreras-Puigvert J. A phenomics approach for antiviral drug discovery. BMC Biol. 2021;19:156. doi: 10.1186/s12915-021-01086-1. PubMed DOI PMC

Rietdijk J., Aggarwal T., Georgieva P., Lapins M., Carreras-Puigvert J., Spjuth O. Morphological profiling of environmental chemicals enables efficient and untargeted exploration of combination effects. Sci. Tot. Environ. 2022;832:155058. doi: 10.1016/j.scitotenv.2022.155058. PubMed DOI

Nassiri I., McCall M.N. Systematic exploration of cell morphological phenotypes associated with a transcriptomic query. Nucleic Acids Res. 2018;46:e116. doi: 10.1093/nar/gky626. PubMed DOI PMC

Ramirez T., Daneshian M., Kamp H., Bois F.Y., Clench M.R., Coen M., Donley B., Fischer S.M., Ekman D.R., Fabian E., et al. Metabolomics in toxicology and preclinical research. ALTEX. 2013;30:209–225. doi: 10.14573/altex.2013.2.209. PubMed DOI PMC

Ventura C., Torres V., Vieira L., Gomes B., Rodrigues A.S., Rueff J., Penque D., Silva M.J. New “Omics” Approaches as Tools to Explore Mechanistic Nanotoxicology. In: Louro H., Silva M.J., editors. Nanotoxicology in Safety Assessment of Nanomaterials. Advances in Experimental Medicine and Biology. Volume 1357. Springer; Berlin/Heidelberg, Germany: 2022. pp. 179–194. PubMed DOI

Halappanavar S., Van Den Brule S., Nymark P., Gaté L., Seidel C., Valentino S., Zhernovkov V., Høgh Danielsen P., De Vizcaya A., Wolff H., et al. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part. Fibre Toxicol. 2020;17:16. doi: 10.1186/s12989-020-00344-4. PubMed DOI PMC

Demokritou P., Kavouras I.G., Ferguson S.T., Koutrakis P. Development of a high volume cascade impactor for toxicological and chemical characterization studies. Aerosol Sci. Technol. 2022;36:925–933. doi: 10.1080/02786820290092113. DOI

Gatoo M.A., Naseem S., Arfat M.Y., Mahmood Dar A., Qasim K., Zubair S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res. Int. 2014;2014:498420. doi: 10.1155/2014/498420. PubMed DOI PMC

McCarrick S., Wei Z., Moelijker N., Derr R., Persson K.A., Hendriks G., Odnevall Wallinder I., Hedberg Y., Karlsson H.L. High variability in toxicity of welding fume nanoparticles from stainless steel in lung cells and reporter cell lines: The role of particle reactivity and solubility. Nanotoxicol. 2019;13:1293–1309. doi: 10.1080/17435390.2019.1650972. PubMed DOI

Gliga A.R., Skoglund S., Odnevall Wallinder I., Fadeel B., Karlsson H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014;11:11. doi: 10.1186/1743-8977-11-11. PubMed DOI PMC

Rahmati M., Silva E.A., Reseland J.E., Heyward C.A., Haugen H.J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 2020;49:5178–5224. doi: 10.1039/D0CS00103A. PubMed DOI

Liu Y., Yang Y., Mai S., Wang D., Song C. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater. Des. 2015;87:797–806. doi: 10.1016/j.matdes.2015.08.086. DOI

Simonelli M., Tuck C., Aboulkhair N.T., Maskery I., Ashcroft I., Wildman R.D., Hague R. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metall. Mater. Trans. 2015;46:3842–3851. doi: 10.1007/s11661-015-2882-8. DOI

Ly S., Rubenchik A.M., Khairallah S.A., Guss G., Matthews M.J. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Sci. Rep. 2017;7:4085. doi: 10.1038/s41598-017-04237-z. PubMed DOI PMC

Sutton A.T., Kriewall C.S., Leu M.C., Newkirk J.W., Brown B. Characterization of laser spatter and condensate generated during the selective laser melting of 304L stainless steel powder. Addit. Manuf. 2020;31:100904. doi: 10.1016/j.addma.2019.100904. DOI

Hedberg Y.S., Wei Z., McCarrick S., Romanovski V., Theodore J., Westin E.M., Wagner R., Persson K.A., Karlsson H.L., Odnevall Wallinder I. Welding fume nanoparticles from solid and flux-cored wires: Solubility, toxicity, and role of fluorides. J. Haz. Mat. 2021;413:125273. doi: 10.1016/j.jhazmat.2021.125273. PubMed DOI

Schwarz H., Schmittner M., Duschl A., Horejs-Hoeck J. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PloS ONE. 2014;9:e113840. doi: 10.1371/journal.pone.0113840. PubMed DOI PMC

Oostingh G.J., Casals E., Italiani P., Colognato R., Stritzinger R., Ponti J., Pfaller T., Kohl Y., Ooms D., Favilli F., et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part. Fibre Toxicol. 2011;8:8. doi: 10.1186/1743-8977-8-8. PubMed DOI PMC

Li Y., Boraschi D. Endotoxin contamination: A key element in the interpretation of nanosafety studies. Nanomedicine. 2016;11:269–287. doi: 10.2217/nnm.15.196. PubMed DOI

Li Y., Italiani P., Casals E., Tran N., Puntes V.F., Boraschi D. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles. Nanotoxicology. 2015;9:462–473. doi: 10.3109/17435390.2014.948090. PubMed DOI

Longhin E.M., El Yamani N., Rundén-Pran E., Dusinska M. The alamar blue assay in the context of safety testing of nanomaterials. Front. Toxicol. 2022;4:981701. doi: 10.3389/ftox.2022.981701. PubMed DOI PMC

Paunovic J., Vucevic D., Radosavljevic T., Mandić-Rajčević S., Pantic I. Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chem. Biol. Interact. 2020;316:108935. doi: 10.1016/j.cbi.2019.108935. PubMed DOI

Cappellini F., Hedberg Y., McCarrick S., Hedberg J., Derr R., Hendriks G., Odnevall Wallinder I., Karlsson H.L. Mechanistic insight into reactivity and (geno) toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology. 2018;12:602–620. doi: 10.1080/17435390.2018.1470694. PubMed DOI

Latvala S., Hedberg J., Di Bucchianico S., Möller L., Odnevall Wallinder I., Elihn K., Karlsson H.L. Nickel release, ROS generation and toxicity of Ni and NiO micro-and nanoparticles. PloS ONE. 2016;11:e0159684. doi: 10.1371/journal.pone.0159684. PubMed DOI PMC

Nel A., Xia T., Madler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI

Hendriks G., Derr R.S., Misovic B., Morolli B., Calleja F.M., Vrieling H. The extended ToxTracker assay discriminates between induction of DNA damage, oxidative stress, and protein misfolding. Toxicol. Sci. 2016;150:190–203. doi: 10.1093/toxsci/kfv323. PubMed DOI PMC

Hendriks G., Atallah M., Morolli B., Calléja F., Ras-Verloop N., Huijskens I., Raamsman M., van de Water B., Vrieling H. The ToxTracker assay: Novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals. Toxicol. Sci. 2012;125:285–298. doi: 10.1093/toxsci/kfr281. PubMed DOI

McCarrick S., Cappellini F., Kessler A., Moelijker N., Derr R., Hedberg J., Wold S., Blomberg E., Odnevall Wallinder I., Hendriks G., et al. ToxTracker reporter cell lines as a tool for mechanism-based (geno) toxicity screening of nanoparticles—Metals, oxides and quantum dots. Nanomaterials. 2020;10:110. doi: 10.3390/nano10010110. PubMed DOI PMC

Fernandes J., Hao L., Bijli K.M., Chandler J.D., Orr M., Hu X., Jones D.P., Go Y.M. From the cover: Manganese stimulates mitochondrial H2O2 production in SH-SY5Y human neuroblastoma cells over physiologic as well as toxicologic range. Toxicol. Sci. 2017;155:213–223. doi: 10.1093/toxsci/kfw196. PubMed DOI PMC

Smith M.R., Fernandes J., Go Y.M., Jones D.P. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem. Biophys. Res. Comm. 2017;482:388–398. doi: 10.1016/j.bbrc.2016.10.126. PubMed DOI PMC

Pfalzer A.C., Bowman A.B. Relationships between essential manganese biology and manganese toxicity in neurological disease. Curr. Environ. Health Rep. 2017;4:223–228. doi: 10.1007/s40572-017-0136-1. PubMed DOI PMC

Yang Y., Bazhin A.V., Werner J., Karakhanova S. Reactive oxygen species in the immune system. Int. Rev. Immunol. 2013;32:249–270. doi: 10.3109/08830185.2012.755176. PubMed DOI

Kroll A., Pillukat M.H., Hahn D., Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012;86:1123–1136. doi: 10.1007/s00204-012-0837-z. PubMed DOI

Zhao J., Riediker M. Detecting the oxidative reactivity of nanoparticles: A new protocol for reducing artifacts. J. Nanopart. Res. 2014;16:2493. doi: 10.1007/s11051-014-2493-0. PubMed DOI PMC

Pandey N.K., Xiong W., Wang L., Chen W., Bui B., Yang J., Amador E., Chen M., Xing C., Athavale A.A., et al. Aggregation-induced emission luminogens for highly effective microwave dynamic therapy. Bioact. Mater. 2022;7:112–125. doi: 10.1016/j.bioactmat.2021.05.031. PubMed DOI PMC

Novak P., Shevchuk A., Ruenraroengsak P., Miragoli M., Thorley A.J., Klenerman D., Lab M.J., Tetley T.D., Gorelik J., Korchev Y.E. Imaging single nanoparticle interactions with human lung cells using fast ion conductance microscopy. Nano Lett. 2014;14:1202–1207. doi: 10.1021/nl404068p. PubMed DOI

Lamb J., Crawford E.D., Peck D., Modell J.W., Blat I.C., Wrobel M.J., Lerner J., Brunet J.P., Subramanian A., Ross K.N., et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–1935. doi: 10.1126/science.1132939. PubMed DOI

Gustafsdottir S.M., Ljosa V., Sokolnicki K.L., Anthony Wilson J., Walpita D., Kemp M.M., Petri Seiler K., Carrel H.A., Golub T.R., Schreiber S.L., et al. Multiplex cytological profiling assay to measure diverse cellular states. PloS ONE. 2013;8:e80999. doi: 10.1371/journal.pone.0080999. PubMed DOI PMC

Caicedo J.C., Arevalo J., Piccioni F., Bray M.A., Hartland C.L., Wu X., Brooks A.N., Berger A.H., Boehm J.S., Carpenter A.E., et al. Cell Painting predicts impact of lung cancer variants. Mol. Biol. Cell. 2022;33:mbc-E21. doi: 10.1091/mbc.E21-11-0538. PubMed DOI PMC

de Almeida M.S., Susnik E., Drasler B., Taladriz-Blanco P., Petri-Fink A., Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 2021;50:5397–5434. doi: 10.1039/D0CS01127D. PubMed DOI PMC

Buyukhatipoglu K., Clyne A.M. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. A. 2011;96:186–195. doi: 10.1002/jbm.a.32972. PubMed DOI

Ispanixtlahuatl-Meráz O., Schins R.P., Chirino Y.I. Cell type specific cytoskeleton disruption induced by engineered nanoparticles. Environ. Sci. Nano. 2018;5:228–245. doi: 10.1039/C7EN00704C. DOI

Déciga-Alcaraz A., Delgado-Buenrostro N.L., Ispanixtlahuatl-Meráz O., Freyre-Fonseca V., Flores-Flores J.O., Ganem-Rondero A., Vaca-Paniagua F., del Pilar Ramos-Godinez M., Morales-Barcenas R., Sánchez-Pérez Y., et al. Irreversible disruption of the cytoskeleton as induced by non-cytotoxic exposure to titanium dioxide nanoparticles in lung epithelial cells. Chem. Biol. Interact. 2020;323:109063. doi: 10.1016/j.cbi.2020.109063. PubMed DOI

Wulf E., Deboben A., Bautz F.A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA. 1979;76:4498–4502. doi: 10.1073/pnas.76.9.4498. PubMed DOI PMC

Zhang X., Zhang H., Liang X., Zhang J., Tao W., Zhu X., Chang D., Zeng X., Liu G., Mei L. Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: Lysosome impairment, mitochondrial damage, and ER stress. Mol. Pharm. 2016;13:2578–2587. doi: 10.1021/acs.molpharmaceut.6b00405. PubMed DOI

Peng T.I., Jou M.J. Mitochondrial swelling and generation of reactive oxygen species induced by photoirradiation are heterogeneously distributed. In: Lee H.K., DiMauro S., Tanaka M., Wei Y.H., editors. Mitochondrial Pathogenesis. Springer; Berlin/Heidelberg, Germany: 2004. pp. 112–122. PubMed DOI

Li D.W., He H., Lin B.B., Xu Z.Q., Jiang F.L., Liu Y. Studies on the isolated mitochondrial damage induced by α-tocopheryl succinate and its interactions with human serum albumin. RSC Adv. 2014;4:3913–3919. doi: 10.1039/C3RA46172F. DOI

Barkhade T., Mahapatra S.K., Banerjee I. Study of mitochondrial swelling, membrane fluidity and ROS production induced by nano-TiO2 and prevented by Fe incorporation. Toxicol. Res. 2019;8:711–722. doi: 10.1039/c9tx00143c. PubMed DOI PMC

Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC

Ahlinder L., Ekstrand-Hammarström B., Geladi P., Österlund L. Large uptake of titania and iron oxide nanoparticles in the nucleus of lung epithelial cells as measured by Raman imaging and multivariate classification. Biophys. J. 2013;105:310–319. doi: 10.1016/j.bpj.2013.06.017. PubMed DOI PMC

Kuznetsov A.V., Margreiter R., Ausserlechner M.J., Hagenbuchner J. The Complex Interplay between Mitochondria, ROS and Entire Cellular Metabolism. Antioxidants. 2022;11:1995. doi: 10.3390/antiox11101995. PubMed DOI PMC

Seal S., Carreras-Puigvert J., Trapotsi M.A., Yang H., Spjuth O., Bender A. Integrating cell morphology with gene expression and chemical structure to aid mitochondrial toxicity detection. bioRxiv. 2022 doi: 10.1038/s42003-022-03763-5. PubMed DOI PMC

Stern S.T., Adiseshaiah P.P., Crist R.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 2012;9:20. doi: 10.1186/1743-8977-9-20. PubMed DOI PMC

Moghadam B.Y., Hou W.C., Corredor C., Westerhoff P., Posner J.D. Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir. 2012;28:16318–16326. doi: 10.1021/la302654s. PubMed DOI PMC

Wei X., Jiang W., Yu J., Ding L., Hu J., Jiang G. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. J. Haz. Mat. 2015;287:217–224. doi: 10.1016/j.jhazmat.2015.01.063. PubMed DOI

Sinclair W.E., Chang H.H., Dan A., Kenis P.J., Murphy C.J., Leckband D.E. Gold nanoparticles disrupt actin organization and pulmonary endothelial barriers. Sci. Rep. 2020;10:13320. doi: 10.1038/s41598-020-70148-1. PubMed DOI PMC

Bereiter-Hahn J., Vöth M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 1994;27:198–219. doi: 10.1002/jemt.1070270303. PubMed DOI

Fenton A.R., Jongens T.A., Holzbaur E.L. Mitochondrial dynamics: Shaping and remodeling an organelle network. Curr. Opin. Cell Biol. 2021;68:28–36. doi: 10.1016/j.ceb.2020.08.014. PubMed DOI PMC

McInnes L., Healy J., Melville J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv. 2018 doi: 10.48550/arXiv.1802.03426. DOI

Kensert A., Harrison P.J., Spjuth O. Transfer learning with deep convolutional neural networks for classifying cellular morphological changes. SLAS Discov. 2019;24:466–475. doi: 10.1177/2472555218818756. PubMed DOI PMC

Seal S., Yang H., Vollmers L., Bender A. Comparison of cellular morphological descriptors and molecular fingerprints for the prediction of cytotoxicity-and proliferation-related assays. Chem. Res. Toxicol. 2021;34:422–437. doi: 10.1021/acs.chemrestox.0c00303. PubMed DOI

Yeung T., Ozdamar B., Paroutis P., Grinstein S. Lipid metabolism and dynamics during phagocytosis. Curr. Opin. Cell Biol. 2006;18:429–437. doi: 10.1016/j.ceb.2006.06.006. PubMed DOI

Li N., Sancak Y., Frasor J., Atilla-Gokcumen G.E. A protective role for triacylglycerols during apoptosis. Biochemistry. 2018;57:72–80. doi: 10.1021/acs.biochem.7b00975. PubMed DOI PMC

Soria N.C., Aga D.S., Atilla-Gokcumen G.E. Lipidomics reveals insights on the biological effects of copper oxide nanoparticles in a human colon carcinoma cell line. Mol. Omics. 2019;15:30–38. doi: 10.1039/C8MO00162F. PubMed DOI

Chiurchiù V., Leuti A., Maccarrone M. Bioactive lipids and chronic inflammation: Managing the fire within. Front. Immunol. 2018;9:38. doi: 10.3389/fimmu.2018.00038. PubMed DOI PMC

Vogel A., Brunner J.S., Hajto A., Sharif O., Schabbauer G. Lipid scavenging macrophages and inflammation. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids. 2022;1867:159066. doi: 10.1016/j.bbalip.2021.159066. PubMed DOI

Wang G., Zhang X., Liu X., Zheng J. Co-culture of human alveolar epithelial (A549) and macrophage (THP-1) cells to study the potential toxicity of ambient PM2. 5: A comparison of growth under ALI and submerged conditions. Toxicol. Res. 2020;9:636–651. doi: 10.1093/toxres/tfaa072. PubMed DOI PMC

Li X.B., Zheng H., Zhang Z.R., Li M., Huang Z.Y., Schluesener H.J., Li Y.Y., Xu S.Q. Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomed. Nanotechnol. Biol. Med. 2009;5:473–479. doi: 10.1016/j.nano.2009.01.013. PubMed DOI

Bhattacharya K., Davoren M., Boertz J., Schins R.P., Hoffmann E., Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part. Fibre Toxicol. 2009;6:17. doi: 10.1186/1743-8977-6-17. PubMed DOI PMC

Barelli H., Antonny B. Lipid unsaturation and organelle dynamics. Curr. Opin. Cell Biol. 2016;41:25–32. doi: 10.1016/j.ceb.2016.03.012. PubMed DOI

Himly M., Geppert M., Hofer S., Hofstätter N., Horejs-Höck J., Duschl A. When would immunologists consider a nanomaterial to be safe? Recommendations for planning studies on nanosafety. Small. 2020;16:1907483. doi: 10.1002/smll.201907483. PubMed DOI

Boraschi D., Alijagic A., Auguste M., Barbero F., Ferrari E., Hernadi S., Mayall C., Michelini S., Navarro Pacheco N.I., Prinelli A., et al. Addressing nanomaterial immunosafety by evaluating innate immunity across living species. Small. 2020;16:2000598. doi: 10.1002/smll.202000598. PubMed DOI

Zhang Q., Guo X., Cheng Y., Chudal L., Pandey N.K., Zhang J., Ma L., Xi Q., Yang G., Chen Y., et al. Use of copper-cysteamine nanoparticles to simultaneously enable radiotherapy, oxidative therapy and immunotherapy for melanoma treatment. Signal Transduct. Target. Ther. 2020;5:58. doi: 10.1038/s41392-020-0156-4. PubMed DOI PMC

Dominissini D., Moshitch-Moshkovitz S., Schwartz S., Salmon-Divon M., Ungar L., Osenberg S., Cesarkas K., Jacob-Hirsch J., Amariglio N., Kupiec M., et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–206. doi: 10.1038/nature11112. PubMed DOI

Luo J., Xu T., Sun K. N6-methyladenosine RNA modification in inflammation: Roles, mechanisms, and applications. Front. Cell Dev. Biol. 2021;9:670711. doi: 10.3389/fcell.2021.670711. PubMed DOI PMC

Gu X., Zhang Y., Li D., Cai H., Cai L., Xu Q. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell. Signal. 2020;69:109553. doi: 10.1016/j.cellsig.2020.109553. PubMed DOI

Hardbower D.M., Asim M., Luis P.B., Singh K., Barry D.P., Yang C., Steeves M.A., Cleveland J.L., Schneider C., Piazuelo M.B., et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc. Natl. Acad. Sci. USA. 2017;114:E751–E760. doi: 10.1073/pnas.1614958114. PubMed DOI PMC

Rath M., Müller I., Kropf P., Closs E.I., Munder M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 2014;5:532. doi: 10.3389/fimmu.2014.00532. PubMed DOI PMC

Marrocco A., Frawley K., Pearce L.L., Peterson J., O’Brien J.P., Mullett S.J., Wendell S.G., St Croix C.M., Mischler S.E., Ortiz L.A. Metabolic Adaptation of Macrophages as Mechanism of Defense against Crystalline Silica. J. Immunol. 2021;207:1627–1640. doi: 10.4049/jimmunol.2000628. PubMed DOI PMC

Rodriguez A.E., Ducker G.S., Billingham L.K., Martinez C.A., Mainolfi N., Suri V., Friedman A., Manfredi M.G., Weinberg S.E., Rabinowitz J.D., et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 2019;29:1003–1011. doi: 10.1016/j.cmet.2019.01.014. PubMed DOI PMC

Benada O., Pokorný V. Modification of the Polaron sputter-coater unit for glow-discharge activation of carbon support films. J. Electron Microsc. Tech. 1990;16:235–239. doi: 10.1002/jemt.1060160304. PubMed DOI

United Nations The Globally Harmonized System of Classification and Labeling of Chemicals, Annex 10, Guidance Document on Transformation/Dissolution of Metals and Metal Compounds in Aqueous Media. [(accessed on 24 March 2022)]. Available online: https://unece.org/DAM/trans/danger/publi/ghs/ghs_rev07/English/13e_annex10.pdf.

Hedberg Y., Midander K., Odnevall Wallinder I. Particles, sweat, and tears: A comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact. Integr. Environ. Assess. Manag. 2010;6:456–468. doi: 10.1002/ieam.66. PubMed DOI

Mazinanian N., Hedberg Y., Odnevall Wallinder I. Nickel release and surface characteristics of fine powders of nickel metal and nickel oxide in media of relevance for inhalation and dermal contact. Regul. Toxicol. Pharmacol. 2013;65:135–146. doi: 10.1016/j.yrtph.2012.10.014. PubMed DOI

Hedberg Y.S., Odnevall Wallinder I. Metal release from stainless steel in biological environments: A review. Biointerphases. 2016;11:018901. doi: 10.1116/1.4934628. PubMed DOI

Wang X., Herting G., Wei Z., Odnevall Wallinder I., Hedberg Y. Bioaccessibility of nickel and cobalt in powders and massive forms of stainless steel, nickel-or cobalt-based alloys, and nickel and cobalt metals in artificial sweat. Regul. Toxicol. Pharmacol. 2019;106:15–26. doi: 10.1016/j.yrtph.2019.04.017. PubMed DOI

Stirling D.R., Swain-Bowden M.J., Lucas A.M., Carpenter A.E., Cimini B.A., Goodman A. CellProfiler 4: Improvements in speed, utility and usability. BMC Bioinform. 2021;22:433. doi: 10.1186/s12859-021-04344-9. PubMed DOI PMC

Way G. Blocklist Features—Cell Profiler. 2019. [(accessed on 24 March 2022)]. Available online: DOI

Behdenna A., Haziza J., Azencott C.A., Nordor A. pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods. bioRxiv. 2020 doi: 10.1101/2020.03.17.995431. PubMed DOI PMC

Johnson W.E., Li C., Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–127. doi: 10.1093/biostatistics/kxj037. PubMed DOI

Chung D., Keleş S. Sparse partial least squares classification for high dimensional data. Stat. Appl. Genet. Mol. Biol. 2010;9:17. doi: 10.2202/1544-6115.1492. PubMed DOI PMC

Chung D., Chun H., Keleş S. Spls: Sparse partial least squares (SPLS) regression and classification. In R Package, Version 2; 2012

Pluskal T., Castillo S., Villar-Briones A., Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC

Pang Z., Chong J., Li S., Xia J. MetaboAnalystR 3.0: Toward an optimized workflow for global metabolomics. Metabolites. 2020;10:186. doi: 10.3390/metabo10050186. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...