Stochastic Particle Creation: From the Dynamical Casimir Effect to Cosmology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CONICET - UNCUYO - ANPCyT - GACR
PubMed
36673292
PubMed Central
PMC9857574
DOI
10.3390/e25010151
PII: e25010151
Knihovny.cz E-zdroje
- Klíčová slova
- cosmology, dynamical Casimir effect, stochastic particle creation,
- Publikační typ
- časopisecké články MeSH
We study a stochastic version of the dynamical Casimir effect, computing the particle creation inside a cavity produced by a random motion of one of its walls. We first present a calculation perturbative in the amplitude of the motion. We compare the stochastic particle creation with the deterministic counterpart. Then, we go beyond the perturbative evaluation using a stochastic version of the multiple scale analysis, that takes into account stochastic parametric resonance. We stress the relevance of the coupling between the different modes induced by the stochastic motion. In the single-mode approximation, the equations are formally analogous to those that describe the stochastic particle creation in a cosmological context, that we rederive using multiple scale analysis.
Zobrazit více v PubMed
Moore G.T. Quantum theory of the electromagnetic field in a variable-length one dimensional cavity. J. Math. Phys. 1970;11:2679. doi: 10.1063/1.1665432. DOI
Dodonov V.V. Current status of the dynamical Casimir effect. Phys. Scr. 2010;82:038105. doi: 10.1088/0031-8949/82/03/038105. DOI
Dalvit D.A.R., Neto P.A.M., Mazzitelli F.D. Fluctuations, dissipation and the dynamical Casimir effect. Lect. Notes Phys. 2011;834:419.
Nation P.D., Johansson J.R., Blencowe M.P., Nori F. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 2012;84:1. doi: 10.1103/RevModPhys.84.1. DOI
Dodonov V.V. Fifty years of the dynamical Casimir effect. Physics. 2020;2:67–104. doi: 10.3390/physics2010007. DOI
Parker L. Particle creation in expanding universes. Phys. Rev. Lett. 1968;21:562. doi: 10.1103/PhysRevLett.21.562. DOI
Parker L. Quantized fields and particle creation in expanding universes I. Phys. Rev. 1969;183:1057. doi: 10.1103/PhysRev.183.1057. DOI
Parker L. Quantized fields and particle creation in expanding universes II. Phys. Rev. D. 1971;3:346. doi: 10.1103/PhysRevD.3.346. DOI
Birrell N.D., Davies P.C.W. Quantum Fields in Curved Space. Cambridge University Press; Cambridge, UK: 1984.
Parker L.E., Toms D. Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity. Cambridge University Press; Cambridge, UK: 2009.
Hu B.L., Shiokawa K. Wave propagation in stochastic space-times: Localization, amplification and particle creation. Phys. Rev. D. 1998;57:3474–3483. doi: 10.1103/PhysRevD.57.3474. DOI
Amin M.A., Baumann D. From Wires to Cosmology. JCAP. 2016;2:45. doi: 10.1088/1475-7516/2016/02/045. DOI
Choudhury S., Mukherjee A., Chauhan P., Bhattacherjee S. Quantum Out-of-Equilibrium Cosmology. Eur. Phys. J. C. 2019;79:320. doi: 10.1140/epjc/s10052-019-6751-2. DOI
Lozano E., Mazzitelli F.D. The role of noise in the early Universe. Int. J. Mod. Phys. D. 2021;30:2150117. doi: 10.1142/S0218271821501170. DOI
Dodonov A.V., Dodonov E.V., Dodonov V.V. Photon generation from vacuum in nondegenerate cavities with regular and random periodic displacements of boundaries. Phys. Lett. A. 2003;317:378. doi: 10.1016/j.physleta.2003.08.065. DOI
Settineri A., Macri V., Garziano L., Stefano O.D., Nori F., Savasta S. Conversion of mechanical noise into correlated photon pairs: Dynamical Casimir effect from an incoherent mechanical drive. Phys. Rev. A. 2019;100:022501. doi: 10.1103/PhysRevA.100.022501. DOI
Roman-Ancheyta R., Ramos-Prieto I., Perez-Leija A., Busch K., Leon-Montiel R.D. Dynamical Casimir effect in stochastic systems: Photon harvesting through noise. Phys. Rev. A. 2017;96:032501. doi: 10.1103/PhysRevA.96.032501. DOI
Razavy M., Terning J. Quantum radiation in a one-dimensional cavity with moving boundaries. Phys. Rev. D. 1985;31:307. doi: 10.1103/PhysRevD.31.307. PubMed DOI
Crocce M., Dalvit D.A.R., Mazzitelli F.D. Resonant photon creation in a three-dimensional oscillating cavity. Phys. Rev. A. 2001;64:013808. doi: 10.1103/PhysRevA.64.013808. DOI
Crocce M., Dalvit D.A.R., Mazzitelli F.D. Quantum electromagnetic field in a three-dimensional oscillating cavity. Phys. Rev. A. 2002;66:033811. doi: 10.1103/PhysRevA.66.033811. DOI
Bender C.M., Orszag S.A. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill; New York, NY, USA: 1978.
Papanicolau G., Keller J.B. Stochastic differential equations with applications to random harmonic oscillators and wave propagation in random media. SIAM J. Appl. Math. 1971;21:287. doi: 10.1137/0121032. DOI
Crocce M., Dalvit D.A.R., Lombardo F.C., Mazzitelli F.D. Hertz potentials approach to the dynamical Casimir effect in cylindrical cavities of arbitrary section. J. Opt. B Quantum Semiclass. Opt. 2005;7:S32. doi: 10.1088/1464-4266/7/3/005. DOI
Ji J.Y., Jung H.H., Park J.W., Soh K.S. Production of photons by the parametric resonance in the dynamical Casimir effect. Phys. Rev. A. 1997;56:4440. doi: 10.1103/PhysRevA.56.4440. DOI
Calzetta E.A., Hu B.L.B. Nonequilibrium Quantum Field Theory. Cambridge University Press; Cambridge, UK: 2008.
Zanchin V., Maia A., Jr., Craig W., Brandenberger R.H. Reheating in the presence of noise. Phys. Rev. D. 1998;57:4651. doi: 10.1103/PhysRevD.57.4651. DOI
Wilson C.M., Johansson G., Pourkabirian A., Simonen M., Johansson J.R., Duty T., Nori F., Delsing P. Observation of the dynamical Casimir effect in a superconducting circuit. Nature. 2011;479:376. doi: 10.1038/nature10561. PubMed DOI