Practical Aspects of Esophageal Pressure Monitoring in Patients with Acute Respiratory Distress Syndrome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
COOPERATIO program INCA
Charles University
PubMed
36675797
PubMed Central
PMC9867326
DOI
10.3390/jpm13010136
PII: jpm13010136
Knihovny.cz E-zdroje
- Klíčová slova
- acute respiratory distress syndrome, esophageal pressure, mechanical ventilation, positive end-expiratory pressure, transpulmonary pressure,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Esophageal pressure (Pes) monitoring is a minimally invasive advanced respiratory monitoring method with the potential to guide ventilation support management. Pes monitoring enables the separation of lung and chest wall mechanics and estimation of transpulmonary pressure, which is recognized as an important risk factor for lung injury during both spontaneous breathing and mechanical ventilation. Appropriate balloon positioning, calibration, and measurement techniques are important to avoid inaccurate results. Both the approach of using absolute expiratory Pes values and the approach based on tidal Pes difference have shown promising results for ventilation adjustments, with the potential to decrease the risk of ventilator-induced lung injury.
Zobrazit více v PubMed
Mauri T., Yoshida T., Bellani G., Goligher E.C., Carteaux G., Rittayamai N., Mojoli F., Chiumello D., Piquilloud L., Grasso S., et al. PLeUral pressure working Group (PLUG—Acute Respiratory Failure section of the European Society of Intensive Care Medicine). Esophageal and transpulmonary pressure in the clinical setting: Meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–1373. doi: 10.1007/s00134-016-4400-x. PubMed DOI
Gattinoni L., Giosa L., Bonifazi M., Pasticci I., Busana M., Macri M., Romitti F., Vassalli F., Quintel M. Targeting transpulmonary pressure to prevent ventilator-induced lung injury. Expert Rev. Respir. Med. 2019;13:737–746. doi: 10.1080/17476348.2019.1638767. PubMed DOI
Sahetya S.K., Brower R.G. The promises and problems of transpulmonary pressure measurements in acute respiratory distress syndrome. Curr. Opin. Crit. Care. 2016;22:7–13. doi: 10.1097/MCC.0000000000000268. PubMed DOI PMC
Gattinoni L., Carlesso E., Caironi P. Stress and strain within the lung. Curr. Opin. Crit. Care. 2012;18:42–47. doi: 10.1097/MCC.0b013e32834f17d9. PubMed DOI
Talmor D., Sarge T., Malhotra A., O’Donnell C.R., Ritz R., Lisbon A., Novack V., Loring S.H. Mechanical ventilation guided by esophageal pressure in acute lung injury. N. Engl. J. Med. 2008;359:2095–2104. doi: 10.1056/NEJMoa0708638. PubMed DOI PMC
Yoshida T., Grieco D.L., Brochard L., Fujino Y. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing. Curr. Opin. Crit. Care. 2020;26:59–65. doi: 10.1097/MCC.0000000000000691. PubMed DOI
Mauri T., Bellani G., Confalonieri A., Tagliabue P., Turella M., Coppadoro A., Citerio G., Patroniti N., Pesenti A. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: Effects of positive end-expiratory pressure and pressure support. Crit. Care Med. 2013;41:1664–1673. doi: 10.1097/CCM.0b013e318287f6e7. PubMed DOI
Yoshida T., Amato M.B.P., Grieco D.L., Chen L., Lima C.A.S., Roldan R., Morais C.C.A., Gomes S., Costa E.L.V., Cardoso P.F.G., et al. Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. Am. J. Respir. Crit. Care Med. 2018;197:1018–1026. doi: 10.1164/rccm.201709-1806OC. PubMed DOI
Mietto C., Malbrain M.L., Chiumello D. Transpulmonary pressure monitoring during mechanical ventilation: A bench-to-bedside review. Anaesthesiol. Intensive Ther. 2015;8:27–37. doi: 10.5603/AIT.a2015.0065. PubMed DOI
Gattinoni L., Chiumello D., Carlesso E., Valenza F. Bench-to-bedside review: Chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit. Care. 2004;8:350–355. doi: 10.1186/cc2854. PubMed DOI PMC
Grieco D.L., Chen L., Brochard L. Transpulmonary pressure: Importance and limits. Ann. Transl. Med. 2017;5:285. doi: 10.21037/atm.2017.07.22. PubMed DOI PMC
Mojoli F., Torriglia F., Orlando A., Bianchi I., Arisi E., Pozzi M. Technical aspects of bedside respiratory monitoring of transpulmonary pressure. Ann. Transl. Med. 2018;6:377. doi: 10.21037/atm.2018.08.37. PubMed DOI PMC
Mojoli F., Chiumello D., Pozzi M., Algieri I., Bianzina S., Luoni S., Volta C.A., Braschi A., Brochard L. Esophageal pressure measurements under different conditions of intrathoracic pressure. An in vitro study of second generation balloon catheters. Minerva Anestesiol. 2015;81:855–864. PubMed
Niknam J., Chandra A., Adams A.B., Nahum A., Ravenscraft S.A., Marini J.J. Effect of a nasogastric tube on esophageal pressure measurement in normal adults. Chest. 1994;106:137–141. doi: 10.1378/chest.106.1.137. PubMed DOI
Mojoli F., Iotti G.A., Torriglia F., Pozzi M., Volta C.A., Bianzina S., Braschi A., Brochard L. In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit. Care. 2016;20:98. doi: 10.1186/s13054-016-1278-5. PubMed DOI PMC
Yang Y.L., He X., Sun X.M., Chen H., Shi Z.H., Xu M., Chen G.Q., Zhou J.X. Optimal esophageal balloon volume for accurate estimation of pleural pressure at end-expiration and end-inspiration: An in vitro bench experiment. Intensive Care Med. Exp. 2017;5:35. doi: 10.1186/s40635-017-0148-z. PubMed DOI PMC
Sun X.M., Chen G.Q., Huang H.W., He X., Yang Y.L., Shi Z.H., Xu M., Zhou J.X. Use of esophageal balloon pressure-volume curve analysis to determine esophageal wall elastance and calibrate raw esophageal pressure: A bench experiment and clinical study. BMC Anesthesiol. 2018;18:21. doi: 10.1186/s12871-018-0488-6. PubMed DOI PMC
Kassis E.B., Talmor D. Clinical application of esophageal manometry: How I do it. Crit. Care. 2021;25:6. doi: 10.1186/s13054-020-03453-w. PubMed DOI PMC
Jiang J., Su L., Cheng W., Wang C., Rui X., Tang B., Zhang H., He H., Long Y. The calibration of esophageal pressure by proper esophageal balloon filling volume: A clinical study. Front. Med. 2022;9:986982. doi: 10.3389/fmed.2022.986982. PubMed DOI PMC
Kumaresan A., Gerber R., Mueller A., Loring S.H., Talmor D. Effects of Prone Positioning on Transpulmonary Pressures and End-expiratory Volumes in Patients without Lung Disease. Anesthesiology. 2018;128:1187–1192. doi: 10.1097/ALN.0000000000002159. PubMed DOI
Beitler J.R., Sarge T., Banner-Goodspeed V.M., Gong M.N., Cook D., Novack V., Loring S.H., Talmor D., EPVent-2 Study Group Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-Fio2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2019;321:846–857. doi: 10.1001/jama.2019.0555. PubMed DOI PMC
Sarge T., Baedorf-Kassis E., Banner-Goodspeed V., Novack V., Loring S.H., Gong M.N., Cook D., Talmor D., Beitler J.R., EPVent-2 Study Group Effect of Esophageal Pressure-guided Positive End-Expiratory Pressure on Survival from Acute Respiratory Distress Syndrome: A Risk-based and Mechanistic Reanalysis of the EPVent-2 Trial. Am. J. Respir. Crit. Care Med. 2021;204:1153–1163. doi: 10.1164/rccm.202009-3539OC. PubMed DOI PMC
Amato M.B., Meade M.O., Slutsky A.S., Brochard L., Costa E.L., Schoenfeld D.A., Stewart T.E., Briel M., Talmor D., Mercat A., et al. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 2015;372:747–755. doi: 10.1056/NEJMsa1410639. PubMed DOI
Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. Cavalcanti A.B., Suzumura É.A., Laranjeira L.N., Paisani D.M., Damiani L.P., Guimarães H.P., Romano E.R., Regenga M.M., Taniguchi L.N.T., et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2017;318:1335–1345. doi: 10.1001/jama.2017.14171. PubMed DOI PMC
Gattinoni L., Marini J.J. In search of the Holy Grail: Identifying the best PEEP in ventilated patients. Intensive Care Med. 2022;48:728–731. doi: 10.1007/s00134-022-06698-x. PubMed DOI PMC
Grasso S., Terragni P., Birocco A., Urbino R., Del Sorbo L., Filippini C., Mascia L., Pesenti A., Zangrillo A., Gattinoni L., et al. ECMO criteria for influenza A (H1N1)-associated ARDS: Role of transpulmonary pressure. Intensive Care Med. 2012;38:395–403. doi: 10.1007/s00134-012-2490-7. PubMed DOI
Bugedo G., Retamal J., Bruhn A. Driving pressure: A marker of severity, a safety limit, or a goal for mechanical ventilation? Crit. Care. 2017;21:199. doi: 10.1186/s13054-017-1779-x. PubMed DOI PMC
Pelosi P., Ball L., Barbas C.S.V., Bellomo R., Burns K.E.A., Einav S., Gattinoni L., Laffey J.G., Marini J.J., Myatra S.N., et al. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit. Care. 2021;25:250. doi: 10.1186/s13054-021-03686-3. PubMed DOI PMC
Goligher E.C., Dres M., Patel B.K., Sahetya S.K., Beitler J.R., Telias I., Yoshida T., Vaporidi K., Grieco D.L., Schepens T., et al. Lung- and Diaphragm-Protective Ventilation. Am. J. Respir. Crit. Care Med. 2020;202:950–961. doi: 10.1164/rccm.202003-0655CP. PubMed DOI PMC
Carteaux G., Parfait M., Combet M., Haudebourg A.F., Tuffet S., Mekontso Dessap A. Patient-Self Inflicted Lung Injury: A Practical Review. J. Clin. Med. 2021;10:2738. doi: 10.3390/jcm10122738. PubMed DOI PMC
Bertoni M., Telias I., Urner M., Long M., Del Sorbo L., Fan E., Sinderby C., Beck J., Liu L., Qiu H., et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit. Care. 2019;23:346. doi: 10.1186/s13054-019-2617-0. PubMed DOI PMC