Enhancement of Thermal Behaviour of Flax with a Ramie Fibre-Reinforced Polymer Composite
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36679229
PubMed Central
PMC9864393
DOI
10.3390/polym15020350
PII: polym15020350
Knihovny.cz E-resources
- Keywords
- flax, heat deflection temperature, hybrid green composites, ramie, thermal expansion, thermal properties, thermogravimetric analysis,
- Publication type
- Journal Article MeSH
Plant-derived fibres, called lignocellulosic fibres, are a natural alternative to synthetic fibres in polymer composite reinforcement. Utilizing renewable resources, such as fibre-reinforced polymeric composites made from plant and animal sources, has become a crucial design requirement for developing and producing parts for all industrial goods. Natural-fibre-based composites are used for door panels, trays, glove boxes, etc. This study involves developing and thermal analysing a flax fibre reinforced with phenol-formaldehyde resin hybridization with ramie fibre by way of a vacuum infusion process. As per ASTM Standard, eight different sequences were fabricated and thermally characterized. In the present study, three stages of weight loss (%) are shown by the thermogravimetric analysis (TGA). The sample loses less weight during the first stage, more during the second, and more during the third. The sample's overall maximum temperature was recorded at 630 °C. It was discovered that sample D (80.1 °C) had the highest heat deflection temperature, and sample B had the lowest (86.0 °C). Sample C had a low thermal expansion coefficient, while sample G had a high thermal expansion coefficient. Sample E had the highest thermal conductivity, measured at 0.213 W/mK, whereas sample A had the lowest conductivity, at 0.182 W/mK. From the present study, it was found that sample H had better thermal characteristics. The result of the present investigation would generate thermal data regarding hybrid ramie and flax composites, which would be helpful for researchers and practitioners involved in the field of biocomposites.
See more in PubMed
Bisht S., Balaguru S., Ramachandran S.K., Gangasalam A., Kweon J. Proton exchange composite membranes comprising SiO2, sulfonated SiO2, and metal–organic frameworks loaded in SPEEK polymer for fuel cell applications. J. Appl. Polym. Sci. 2021;138:50530. doi: 10.1002/app.50530. DOI
Kalita K., Mallick P.K., Bhoi A.K., Ghadai K.R. Optimizing Drilling Induced Delamination in GFRP Composites using Genetic Algorithm & Particle Swarm Optimisation. Adv. Compos. Lett. 2018;27:096369351802700101.
Bhattacharya S., Kalita K., Čep R., Chakraborty S. A Comparative Analysis on Prediction Performance of Regression Models during Machining of Composite Materials. Materials. 2021;14:6689. doi: 10.3390/ma14216689. PubMed DOI PMC
Zhang W., Huang Y. Three-dimensional numerical investigation of mixed-mode debonding of FRP-concrete interface using a cohesive zone model. Constr. Build. Mater. 2022;350:128818. doi: 10.1016/j.conbuildmat.2022.128818. DOI
Tibadia R., Patwardhan K., Shah D., Shinde D., Chaudhari R., Kalita K. Experimental investigation on hole quality in drilling of composite pipes. Trans. Can. Soc. Mech. Eng. 2018;42:147–155. doi: 10.1139/tcsme-2017-0045. DOI
Shi M., Wang R., Li L., Chen N., Xiao P., Yan C., Yan X. Redox-Active Polymer Integrated with MXene for Ultra-Stable and Fast Aqueous Proton Storage. Adv. Funct. Mater. 2023;33:2209777. doi: 10.1002/adfm.202209777. DOI
Ramesh M., Nijanthan S., Palanikumar K. Processing and Mechanical Property Evaluation of Kenaf-Glass Fibre Reinforced Polymer Composites. Appl. Mech. Mater. 2015;766–767:187–192. doi: 10.4028/www.scientific.net/AMM.766-767.187. DOI
Rezghi Maleki H., Hamedi M., Kubouchi M., Arao Y. Experimental Investigation on Drilling of Natural Flax Fibre-Reinforced Composites. Mater. Manuf. Process. 2019;34:283–292. doi: 10.1080/10426914.2018.1532584. DOI
Cheung H.-Y., Ho M.-P., Lau K.-T., Cardona F., Hui D. Natural Fibre-Reinforced Composites for Bioengineering and Environmental Engineering Applications. Compos. B Eng. 2009;40:655–663. doi: 10.1016/j.compositesb.2009.04.014. DOI
Joseph S., Sreekala M.S., Thomas S. Effect of Chemical Modifications on the Thermal Stability and Degradation of Banana Fiber and Banana Fiber-Reinforced Phenol Formaldehyde Composites. J. Appl. Polym. Sci. 2008;110:2305–2314. doi: 10.1002/app.27648. DOI
Azwa Z.N., Yousif B.F., Manalo A.C., Karunasena W. A Review on the Degradability of Polymeric Composites Based on Natural Fibres. Mater. Eng. 2013;47:424–442. doi: 10.1016/j.matdes.2012.11.025. DOI
Tarasov D., Leitch M., Fatehi P. Lignin-Carbohydrate Complexes: Properties, Applications, Analyses, and Methods of Extraction: A Review. Biotechnol. Biofuels. 2018;11:269. doi: 10.1186/s13068-018-1262-1. PubMed DOI PMC
Sain M., Fortier D. Flax Shives Refining, Chemical Modification and Hydrophobisation for Paper Production. Ind. Crops Prod. 2002;15:1–13. doi: 10.1016/S0926-6690(01)00090-5. DOI
Stamboulis A., Baillie C.A., Peijs T. Effects of Environmental Conditions on Mechanical and Physical Properties of Flax Fibres. Compos. Part A Appl. Sci. Manuf. 2001;32:1105–1115. doi: 10.1016/S1359-835X(01)00032-X. DOI
Lubis M.A.R., Handika S.O., Sari R.K., Iswanto A.H., Antov P., Kristak L., Lee S.H., Pizzi A. Modification of Ramie Fibre via Impregnation with Low Viscosity Bio-Polyurethane Resins Derived from Lignin. Polymers. 2022;14:2165. doi: 10.3390/polym14112165. PubMed DOI PMC
Fengel D., Shao X. Studies on the Lignin of the Bamboo Species Phyllostachys Makinoi Hay. Wood Sci. Technol. 1985;19:131–137. doi: 10.1007/BF00353073. DOI
Nurazzi N.M., Asyraf M.R.M., Rayung M., Norrrahim M.N.F., Shazleen S.S., Rani M.S.A., Shafi A.R., Aisyah H.A., Radzi M.H.M., Sabaruddin F.A., et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fibre Polymer Composites: A Review on Influence of Chemical Treatments. Polymers. 2021;13:2710. doi: 10.3390/polym13162710. PubMed DOI PMC
Handika S.O., Lubis M.A.R., Sari R.K., Laksana R.P.B., Antov P., Savov V., Gajtanska M., Iswanto A.H. Enhancing Thermal and Mechanical Properties of Ramie Fibre via Impregnation by Lignin-Based Polyurethane Resin. Materials. 2021;14:6850. doi: 10.3390/ma14226850. PubMed DOI PMC
Aristri M.A., Lubis M.A.R., Laksana R.P.B., Sari R.K., Iswanto A.H., Kristak L., Antov P., Pizzi A. Thermal and Mechanical Performance of Ramie Fibres Modified with Polyurethane Resins Derived from Acacia Mangium Bark Tannin. J. Mater. Res. Technol. 2022;18:2413–2427. doi: 10.1016/j.jmrt.2022.03.131. DOI
Cherizol R., Sain M., Tjong J. Evaluation of the Influence of Fibre Aspect Ratio and Fibre Content on the Rheological Characteristic of High Yield Pulp Fibre Reinforced Polyamide 11 “HYP/PA11” Green Composite. Open J. Polym. Chem. 2015;5:1–8. doi: 10.4236/ojpchem.2015.51001. DOI
Khan A., Joshi S., Ahmad M.A., Lyashenko V. Some Effect of Chemical Treatment by Ferric Nitrate Salts on the Structure and Morphology of Coir Fibre Composites. Adv. Mater. Phys. Chem. 2015;5:39–45. doi: 10.4236/ampc.2015.51006. DOI
Kaushik V.K., Goyal M. Synthesis and Characterization of Graft Co-Polymers of Sisal Fibre with Binary Vinyl Monomers. Open Access Libr. J. 2014;1:1–6. doi: 10.4236/oalib.1100604. DOI
Tezara C., Hadi A.E., Siregar J.P., Muhamad Z., Hamdan M.H.M., Oumer A.N., Jaafar J., Irawan A.P., Rihayat T., Fitriyana D.F. The Effect of Hybridisation on Mechanical Properties and Water Absorption Behaviour of Woven Jute/Ramie Reinforced Epoxy Composites. Polymers. 2021;13:2964. doi: 10.3390/polym13172964. PubMed DOI PMC
Mohanty A.K., Misra M., Hinrichsen G. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromol. Mater. Eng. 2000;276–277:1–24. doi: 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W. DOI
Nam S., Netravali A.N. Green Composites. I. Physical Properties of Ramie Fibres for Environment-Friendly Green Composites. Fibre. Polym. 2006;7:372–379. doi: 10.1007/BF02875769. DOI
Vetcher A.A., Iordanskii A.L. Natural Degradation: Polymer Degradation under Different Conditions. Polymers. 2022;14:3595. doi: 10.3390/polym14173595. PubMed DOI PMC
Poljansek I., Krajnc M. Characterization of Phenol-Formaldehyde Prepolymer Resins by In Line FT-IR Spectroscopy. Acta Chim. Slov. 2005;52:238–244.
Gajjar T., Shah D.B., Joshi S.J., Patel K.M. Analysis of Process Parameters for Composites Manufacturing Using Vacuum Infusion Process. Mater. Today. 2020;21:1244–1249. doi: 10.1016/j.matpr.2020.01.112. DOI
van Oosterom S., Allen T., Battley M., Bickerton S. An Objective Comparison of Common Vacuum Assisted Resin Infusion Processes. Compos. Part A Appl. Sci. Manuf. 2019;125:105528. doi: 10.1016/j.compositesa.2019.105528. DOI
Obande W., Brádaigh C.M.Ó., Ray D. Thermoplastic Hybrid-Matrix Composite Prepared by a Room-Temperature Vacuum Infusion and in-Situ Polymerisation Process. Compos. Commun. 2020;22:100439. doi: 10.1016/j.coco.2020.100439. DOI
Test Method for Compositional Analysis by Thermogravimetry (ASTM) ASTM International; West Conshohocken, PA, USA: 2014.
Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics between −30 °C and 30 °C with a Vitreous Silica Dilatometer, Standard Using a Dilatometer. ASTM; West Conshohocken, PA, USA: 2013.
Standard Test Method for Evaluating the Resistance to Thermal Transmission of Materials by the Guarded Heat Flow Meter Technique. ASTM; West Conshohocken, PA, USA: 2006.
Claucherty S., Sakaue H. Phenol-Formaldehyde Resin for Optical-Chemical Temperature Sensing. Sensors. 2018;18:1756. doi: 10.3390/s18061756. PubMed DOI PMC
Liu Z.-T., Yang Y., Zhang L., Sun P., Liu Z.-W., Lu J., Xiong H., Peng Y., Tang S. Study on the Performance of Ramie Fibre Modified with Ethylenediamine. Carbohydr. Polym. 2008;71:18–25. doi: 10.1016/j.carbpol.2007.05.008. DOI
Hossen J., Begum H.A., Uddin M.M., Isla M.T., Islam M.M. Investigating the Physical Properties of Treated and Untreated Jute Fibre-Polyester Composites. Asian J. Text. 2017;8:13–21. doi: 10.3923/ajt.2018.13.21. DOI
Arrakhiz F.Z., El Achaby M., Malha M., Bensalah M.O., Fassi-Fehri O., Bouhfid R., Benmoussa K., Qaiss A. Mechanical and Thermal Properties of Natural Fibres Reinforced Polymer Composites: Doum/Low Density Polyethylene. Mater. Eng. 2013;43:200–205. doi: 10.1016/j.matdes.2012.06.056. DOI
Chin S.C., Tee K.F., Tong F.S., Ong H.R., Gimbun J. Thermal and Mechanical Properties of Bamboo Fibre Reinforced Composites. Mater. Today Commun. 2020;23:100876. doi: 10.1016/j.mtcomm.2019.100876. DOI
Chen X., Ren J., Zhang N., Gu S., Li J. Effects of Heat Treatment on the Thermal and Mechanical Properties of Ramie Fabric-Reinforced Poly(Lactic Acid) Biocomposites. J. Reinf. Plast. Compos. 2015;34:28–36. doi: 10.1177/0731684414562222. DOI
Ramesh V., Anand P. Thermal Analysis of Kevlar/Basalt Reinforced Hybrid Polymer Composite. Mater. Res. Express. 2021;8:115302. doi: 10.1088/2053-1591/ac3aa6. DOI
Reddy R.M., Ravi S., Singh P.K., Dineshkumar H., Arun Bhaskar K., Siva Nagi Reddy V., Seikh A.H., Siddique M.H., Nagaraj A. Investigation on Heat Deflection and Thermal Conductivity of Basalt Fibre Reinforced Composites Prepared by Hand Layup Method. Adv. Mater. Sci. Eng. 2022;2022:1294374. doi: 10.1155/2022/1294374. DOI
Mittal G., Rhee K.Y., Mišković-Stanković V., Hui D. Reinforcements in Multi-Scale Polymer Composites: Processing, Properties, and Applications. Compos. B Eng. 2018;138:122–139. doi: 10.1016/j.compositesb.2017.11.028. DOI
Van de Velde K., Kiekens P. Thermoplastic Polymers: Overview of Several Properties and Their Consequences in Flax Fibre Reinforced Composites. Polym. Test. 2001;20:885–893. doi: 10.1016/S0142-9418(01)00017-4. DOI
Saidane E.H., Scida D., Ayad R. Thermo-Mechanical Behaviour of Flax/Green Epoxy Composites: Evaluation of Thermal Expansion Coefficients and Application to Internal Stress Calculation. Ind. Crops Prod. 2021;170:113786. doi: 10.1016/j.indcrop.2021.113786. DOI
Jawaid M., Awad S., Fouad H., Asim M., Saba N., Dhakal H.N. Improvements in the Thermal Behaviour of Date Palm/Bamboo Fibres Reinforced Epoxy Hybrid Composites. Compos. Struct. 2021;277:114644. doi: 10.1016/j.compstruct.2021.114644. DOI
Anand P., Anbumalar V. Investigation on Thermal behaviour of alkali and benzoyl treated hemp fibre reinforced cellulose filled epoxy green composites. Cell. Chem. Technol. 2017;51:91–101.
Li X., Tabil L.G., Oguocha I.N., Panigrahi S. Thermal Diffusivity, Thermal Conductivity, and Specific Heat of Flax Fibre–HDPE Biocomposites at Processing Temperatures. Compos. Sci. Technol. 2008;68:1753–1758. doi: 10.1016/j.compscitech.2008.02.016. DOI
Sharma A., Patnaik A. Experimental Investigation on Mechanical and Thermal Properties of Marble Dust Particulate-Filled Needle-Punched Nonwoven Jute Fibre/Epoxy Composite. JOM. 2018;70:1284–1288. doi: 10.1007/s11837-018-2828-x. DOI
Soleimani M., Tabil L., Panigrahi S., Opoku A. The Effect of Fibre Pretreatment and Compatibilizer on Mechanical and Physical Properties of Flax Fibre-Polypropylene Composites. J. Polym. Environ. 2008;16:74–82. doi: 10.1007/s10924-008-0102-y. DOI
Hamad S.F., Stehling N., Holland C., Foreman J.P., Rodenburg C. Low-Voltage SEM of Natural Plant Fibres: Microstructure Properties (Surface and Cross-Section) and Their Link to the Tensile Properties. Procedia Eng. 2017;200:295–302. doi: 10.1016/j.proeng.2017.07.042. DOI