Genome-Wide Identification, Quantification, and Validation of Differentially Expressed miRNAs in Eggplant (Solanum melongena L.) Based on Their Response to Ralstonia solanacearum Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36687045
PubMed Central
PMC9851032
DOI
10.1021/acsomega.2c07097
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
MicroRNAs (miRNAs), a type of short noncoding RNA molecule (21-23 nucleotides), mediate repressive gene regulation through RNA silencing at the posttranscriptional level and play an important role in the defense response to abiotic and biotic stresses. miRNAs of the plant system have been studied in model crops for their diverse regulatory role while less is known about their significance in other plants whose genome and transcriptome data are scarce in the database, including eggplant (Solanum melongena L.). In the present study, a next-generation sequencing platform was used for the sequencing of miRNA, and real-time quantitative PCR for miRNAs was used to validate the gene expression patterns of miRNAs in Solanum melongena plantlets infected with the bacterial wilt-causing pathogen Ralstonia solanacearum (R. solanacearum). Sequence analyses showed the presence of 375 miRNAs belonging to 29 conserved families. The miR414 is highly conserved miRNA across the plant system while miR5658 and miR5021 were found exclusively in Arabidopsis thaliana surprisingly, these miRNAs were found in eggplants too. The most abundant families were miR5658 and miR414. Ppt-miR414, hvu-miR444b, stu-miR8020, and sly miR5303 were upregulated in Pusa purple long (PPL) (susceptible) at 48 h postinfection, followed by a decline after 96 h postinfection. A similar trend was obtained in ath-miR414, stu-mir5303h, alymiR847-5p, far-miR1134, ath-miR5021, ath-miR5658, osa-miR2873c, lja-miR7530, stu-miR7997c, and gra-miR8741 but at very low levels after infection in the susceptible variety, indicating their negative role in the suppression of host immunity. On the other hand, osa-miR2873c was found to be slightly increased after 96 hpi from 48 hpi. Most of the miRNAs under study showed relatively lower expression in the resistant variety Arka Nidhi after infection than in the susceptible variety. These results shed light on a deeper regulatory role of miRNAs and their targets in regulation of the plant response to bacterial infection. The present experiment and their results suggested that the higher expression of miRNA leads to a decline in host mRNA and thus shows susceptibility.
Department of Biotechnology and Biochemistry Junagadh Agricultural University Junagadh 362 001 India
Department of Horticulture Faculty of Agriculture Ataturk University 25240 Erzurum Turkey
Zobrazit více v PubMed
Baulcombe D. RNA Silencing in Plants. Nature 2004, 431, 356–363. 10.1038/nature02874. PubMed DOI
Vaucheret H. Post-Transcriptional Small RNA Pathways in Plants: Mechanisms and Regulations. Genes Dev. 2006, 20, 759–771. 10.1101/gad.1410506. PubMed DOI
Axtell M. J. Classification and Comparison of Small RNAs from Plants. Annu. Rev. Plant Biol. 2013, 64, 137–159. 10.1146/annurev-arplant-050312-120043. PubMed DOI
Chen X. Small RNAs and Their Roles in Plant Development. Annu. Rev. Cell Dev. Biol. 2009, 25, 21–44. 10.1146/annurev.cellbio.042308.113417. PubMed DOI PMC
Chen X. Small RNAs in Development – Insights from Plants. Curr. Opin. Genet. Dev. 2012, 22, 361–367. 10.1016/j.gde.2012.04.004. PubMed DOI PMC
Palatnik J. F.; Allen E.; Wu X.; Schommer C.; Schwab R.; Carrington J. C.; Weigel D. Control of Leaf Morphogenesis by MicroRNAs. Nature 2003, 425, 257–263. 10.1038/nature01958. PubMed DOI
Mallory A. C.; Reinhart B. J.; Jones-Rhoades M. W.; Tang G.; Zamore P. D.; Barton M. K.; Bartel D. P. MicroRNA Control of PHABULOSA in Leaf Development: Importance of Pairing to the MicroRNA 5′ Region. EMBO J. 2004, 23, 3356–3364. 10.1038/sj.emboj.7600340. PubMed DOI PMC
Rubio-Somoza I.; Weigel D. MicroRNA Networks and Developmental Plasticity in Plants. Trends Plant Sci. 2011, 16, 258–264. 10.1016/j.tplants.2011.03.001. PubMed DOI
Islam W.; Qasim M.; Noman A.; Adnan M.; Tayyab M.; Farooq T. H.; Wei H.; Wang L. Plant MicroRNAs: Front Line Players against Invading Pathogens. Microb. Pathog. 2018, 118, 9–17. 10.1016/J.MICPATH.2018.03.008. PubMed DOI
Liu S. R.; Zhou J. J.; Hu C. G.; Wei C. L.; Zhang J. Z. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense. Front. Microbiol. 2017, 8, 1801. 10.3389/fmicb.2017.01801. PubMed DOI PMC
Sunkar R.; Chinnusamy V.; Zhu J.; Zhu J. K. Small RNAs as Big Players in Plant Abiotic Stress Responses and Nutrient Deprivation. Trends Plant Sci. 2007, 12, 301–309. 10.1016/j.tplants.2007.05.001. PubMed DOI
Jagadeeswaran G.; Zheng Y.; Li Y. F.; Shukla L. I.; Matts J.; Hoyt P.; MacMil S. L.; Wiley G. B.; Roe B. A.; Zhang W.; Sunkar R. Cloning and Characterization of Small RNAs from Medicago Truncatula Reveals Four Novel Legume-Specific MicroRNA Families. New Phytol. 2009, 184, 85–98. 10.1111/j.1469-8137.2009.02915.x. PubMed DOI
Rejeb I.; Pastor V.; Mauch-Mani B. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants 2014, 3, 458–475. 10.3390/plants3040458. PubMed DOI PMC
Wicker E.; Lefeuvre P.; De Cambiaire J.-C.; Lemaire C.; Poussier S.; Prior P. Contrasting Recombination Patterns and Demographic Histories of the Plant Pathogen Ralstonia Solanacearum Inferred from MLSA. ISME J. 2012, 6, 961–974. 10.1038/ismej.2011.160. PubMed DOI PMC
Grimault V.; Prior P. Grafting Tomato Cultivars Resistant or Susceptible to Bacterial Wilt: Analysis of Resistance Mechanisms. J. Phytopathol. 1994, 141, 330–334. 10.1111/j.1439-0434.1994.tb01477.x. DOI
Allen C.; Prior P.; Hayward A. C.. Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex, 2005; pp 449 −461.
Mansfield J.; Genin S.; Magori S.; Citovsky V.; Sriariyanum M.; Ronald P.; Dow M.; Verdier V.; Beer S. V.; Machado M. A.; Toth I.; Salmond G.; Foster G. D. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 614–629. 10.1111/j.1364-3703.2012.00804.x. PubMed DOI PMC
Genin S.; Denny T. P. Pathogenomics of the Ralstonia Solanacearum Species Complex. Annu. Rev. Phytopathol. 2012, 50, 67–89. 10.1146/annurev-phyto-081211-173000. PubMed DOI
Sakthivel K.; Baskaran V.; Abirami K.; Manigundan K.; Gautam R. K. Cross-Infectivity of Ralstonia Solanacearum from Marigold Grown in Andaman Islands. J. Hortic. Sci. 2017, 11, 179–181.
Singh D. Bacterial Wilt of Solanaceous Crops: Diagnosis, Diversity and Management. Indian Phytopathol. 2017, 70, 151–163. 10.24838/ip.2017.v70.i2.70607. DOI
Lebeau A.; Daunay M.-C.; Frary A.; Palloix A.; Wang J.-F.; Dintinger J.; Chiroleu F.; Wicker E.; Prior P. Bacterial Wilt Resistance in Tomato, Pepper, and Eggplant: Genetic Resources Respond to Diverse Strains in the Ralstonia Solanacearum Species Complex. Phytopathology 2011, 101, 154. 10.1094/PHYTO-02-10-0048. PubMed DOI
Xi’ou X.; Bihao C.; Guannan L.; Jianjun L.; Qinghua C.; Jin J.; Yujing C. Functional Characterization of a Putative Bacterial Wilt Resistance Gene (RE-Bw) in Eggplant. Plant Mol. Biol. Rep. 2015, 33, 1058–1073. 10.1007/s11105-014-0814-1. DOI
Syfert M. M.; Castañeda-Álvarez N. P.; Khoury C. K.; Särkinen T.; Sosa C. C.; Achicanoy H. A.; Bernau V.; Prohens J.; Daunay M. C.; Knapp S. Crop Wild Relatives of the Brinjal Eggplant (Solanum Melongena): Poorly Represented in Genebanks and Many Species at Risk of Extinction. Am. J. Bot. 2016, 103, 635–651. 10.3732/ajb.1500539. PubMed DOI
Salgon S.; Jourda C.; Sauvage C.; Daunay M. C.; Reynaud B.; Wicker E.; Dintinger J. Eggplant Resistance to the PubMed DOI PMC
Nahar K.; Matsumoto I.; Taguchi F.; Inagaki Y.; Yamamoto M.; Toyoda K.; Shiraishi T.; Ichinose Y.; Mukaihara T. PubMed DOI PMC
FAO . The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction, 2019.
Statistics, A . Educational Statistics at a Glance 2018, 2018; pp 1–127.
Suvagiya D.; Shilpa V. C.; Parth S.; Ardeshna N. J. Growth Performance of Major Vegetable Crops in Gujarat State §. Agric. Econ. Res. Rev. 2017, 30, 139–149. 10.5958/0974-0279.2017.00013.1. DOI
McGarvey J. A.; Denny T. P.; Schell M. A. Spatial-Temporal and Quantitative Analysis of Growth and EPS I Production by Ralstonia Solanacearum in Resistant and Susceptible Tomato Cultivars. Phytopathology. 1999, 89, 1233–1239. 10.1094/PHYTO.1999.89.12.1233. PubMed DOI
Cock P. J. A.; Fields C. J.; Goto N.; Heuer M. L.; Rice P. M. The Sanger FASTQ File Format for Sequences with Quality Scores, and the Solexa/Illumina FASTQ Variants. Nucleic Acids Res. 2010, 38, 1767–1771. 10.1093/nar/gkp1137. PubMed DOI PMC
Kozomara A.; Birgaoanu M.; Griffiths-Jones S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019, 47, D155–D162. 10.1093/nar/gky1141. PubMed DOI PMC
Dai X.; Zhao P. X. PsRNATarget: A Plant Small RNA Target Analysis Server. Nucleic Acids Res. 2011, 39, 155–159. 10.1093/nar/gkr319. PubMed DOI PMC
Martínez G.; Forment J.; Llave C.; Pallás V.; Gómez G. High-Throughput Sequencing, Characterization and Detection of New and Conserved Cucumber MiRNAs. PLoS One 2011, 6, e19523 10.1371/journal.pone.0019523. PubMed DOI PMC
Arif M. A.; Frank W.; Khraiwesh B. Role of RNA Interference (RNAi) in the Moss Physcomitrella Patens. Int. J. Mol. Sci. 2013, 14, 1516–1540. 10.3390/ijms14011516. PubMed DOI PMC
Hajieghrari B.; Farrokhi N.; Goliaei B.; Kavousi K. Computational Identifi Cation of MicroRNAs and Their Transcript Target(s) in Field Mustard ( PubMed DOI PMC
Zhang M.; Zhang H.; Tan J.; Huang S.; Chen X.; Jiang D.; Xiao X. Transcriptome Analysis of Eggplant Root in Response to Root-Knot Nematode Infection. Pathogens 2021, 10, 470. 10.3390/pathogens10040470. PubMed DOI PMC
Zhang Y.; Zhang Q.; Hao L.; Wang S.; Wang S.; Zhang W.; Xu C.; Yu Y.; Li T. A Novel MiRNA Negatively Regulates Resistance to Glomerella Leaf Spot by Suppressing Expression of an NBS Gene in Apple. Hortic. Res. 2019, 6, 93. 10.1038/s41438-019-0175-x. PubMed DOI PMC
Prabu G. R.; Mandal A. K. A. Computational Identification of MiRNAs and Their Target Genes from Expressed Sequence Tags of Tea (Camellia Sinensis). Genomics, Proteomics Bioinf. 2010, 8, 113–121. 10.1016/S1672-0229(10)60012-5. PubMed DOI PMC
Kogan G. L.; Gvozdev V. A. Multifunctional Nascent Polypeptide-Associated Complex (NAC). Mol. Biol. 2014, 48, 189–196. 10.1134/S0026893314020095. PubMed DOI
Sarkar Das S.; Yadav S.; Singh A.; Gautam V.; Sarkar A. K.; Nandi A. K.; Karmakar P.; Majee M.; Sanan-Mishra N. Expression Dynamics of MiRNAs and Their Targets in Seed Germination Conditions Reveals MiRNA-Ta-SiRNA Crosstalk as Regulator of Seed Germination. Sci. Rep. 2018, 8, 1233. 10.1038/s41598-017-18823-8. PubMed DOI PMC
Zhang W.; Luo Y.; Gong X.; Zeng W.; Li S. Computational Identification of 48 Potato MicroRNAs and Their Targets. Comput. Biol. Chem. 2009, 33, 84–93. 10.1016/j.compbiolchem.2008.07.006. PubMed DOI
Qiu C. X.; Xie F. L.; Zhu Y. Y.; Guo K.; Huang S. Q.; Nie L.; Yang Z. M. Computational Identification of MicroRNAs and Their Targets in Gossypium Hirsutum Expressed Sequence Tags. Gene 2007, 395, 49–61. 10.1016/j.gene.2007.01.034. PubMed DOI
Fulton D. C.; Stettler M.; Mettler T.; Vaughan C. K.; Li J.; Francisco P.; Gil M.; Reinhold H.; Eicke S.; Messerli G.; Dorken G.; Halliday K.; Smith A. M.; Smith S. M.; Zeeman S. C. β-Amylase4, a Noncatalytic Protein Required for Starch Breakdown, Acts Upstream of Three Active β-Amylases in Arabidopsis Chloroplasts. Plant Cell 2008, 20, 1040–1058. 10.1105/tpc.107.056507. PubMed DOI PMC
Chia T.; Thorneycroft D.; Chapple A.; Messerli G.; Chen J.; Zeeman S. C.; Smith S. M.; Smith A. M. A Cytosolic Glucosyltransferase Is Required for Conversion of Starch to Sucrose in Arabidopsis Leaves at Night. Plant J. 2004, 37, 853–863. 10.1111/j.1365-313X.2003.02012.x. PubMed DOI
Koch K. E.CARBOHYDRATE-MODULATED.Pdf, 1996. PubMed
Bläsing O. E.; Gibon Y.; Günther M.; Höhne M.; Morcuende R.; Osuna D.; Thimm O.; Usadel B.; Scheible W. R.; Stitt M. Sugars and Circadian Regulation Make Major Contributions to the Global Regulation of Diurnal Gene Expression in Arabidopsis. Plant Cell 2005, 17, 3257–3281. 10.1105/tpc.105.035261. PubMed DOI PMC
Rolland F.; Baena-Gonzalez E.; Sheen J. Sugar Sensing and Signaling in Plants: Conserved and Novel Mechanisms. Annu. Rev. Plant Biol. 2006, 57, 675–709. 10.1146/annurev.arplant.57.032905.105441. PubMed DOI
Baena-González E.; Rolland F.; Thevelein J. M.; Sheen J. A Central Integrator of Transcription Networks in Plant Stress and Energy Signalling. Nature 2007, 448, 938–942. 10.1038/nature06069. PubMed DOI
Verbeek R. E. M.; Van Buyten E.; Alam M. Z.; De Vleesschauwer D.; Van Bockhaven J.; Asano T.; Kikuchi S.; Haeck A.; Demeestere K.; Gheysen G.; Höfte M.; Kyndt T. Jasmonate-Induced Defense Mechanisms in the Belowground Antagonistic Interaction Between PubMed DOI PMC
Liu Z.; Zhu Y.; Gao J.; Yu F.; Dong A.; Shen W. H. Molecular and Reverse Genetic Characterization of NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) Genes Unravels Their Function in Transcription and Nucleotide Excision Repair in Arabidopsis Thaliana. Plant J. 2009, 59, 27–38. 10.1111/j.1365-313X.2009.03844.x. PubMed DOI
Araújo S.; Kanazawa A.; Zeng C.; Dubery I. A.; Djami-Tchatchou A. T.; Sanan-Mishra N.; Ntushelo K. Functional Roles of MicroRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection Functional Roles of MicroRNAs in Agronomically Important. Front. Plant Sci. 2017, 8, 378. 10.3389/fpls.2017.00378. PubMed DOI PMC
Shui X. R.; Chen Z. W.; Li J. X. MicroRNA Prediction and Its Function in Regulating Drought-Related Genes in Cowpea. Plant Sci. 2013, 210, 25–35. 10.1016/J.PLANTSCI.2013.05.002. PubMed DOI
Kim S.; Yang J. Y.; Xu J.; Jang I. C.; Prigge M. J.; Chua N. H. Two Cap-Binding Proteins CBP20 and CBP80 Are Involved in Processing Primary MicroRNAs. Plant Cell Physiol. 2008, 49, 1634–1644. 10.1093/pcp/pcn146. PubMed DOI PMC
Gupta O. P.; Sharma P.; Gupta R. K.; Sharma I. MicroRNA Mediated Regulation of Metal Toxicity in Plants: Present Status and Future Perspectives. Plant Mol. Biol. 2014, 84, 1–18. 10.1007/s11103-013-0120-6. PubMed DOI
Su Y.; Zhang Y.; Huang N.; Liu F.; Su W.; Xu L.; Ahmad W.; Wu Q.; Guo J.; Que Y. Small RNA Sequencing Reveals a Role for Sugarcane MiRNAs and Their Targets in Response to Sporisorium Scitamineum Infection. BMC Genomics 2017, 18, 325. 10.1186/s12864-017-3716-4. PubMed DOI PMC
von Saint Paul V.; Zhang W.; Kanawati B.; Geist B.; Faus-Keßler T.; Schmitt-Kopplin P.; Schäffner A. R. The Arabidopsis Glucosyltransferase UGT76B1 Conjugates Isoleucic Acid and Modulates Plant Defense and Senescence. Plant Cell 2011, 23, 4124–4145. 10.1105/tpc.111.088443. PubMed DOI PMC