• This record comes from PubMed

External focus of attention enhances arm velocities during volleyball spike in young female players

. 2022 ; 13 () : 1041871. [epub] 20230105

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The aim of this study was to investigate the effect of different volleyball-specific attentional focus instructions on arm velocities of a volleyball spike in young female volleyball players using the Statistical Parametric Mapping method. Twelve young female volleyball players (13.6 ± 0.6 years old, 1.8 ± 0.8 years of experience in volleyball training) were asked to perform a volleyball spike in a standing position in three different attentional focus conditions including internal focus (IF, i.e., pull back your elbow prior to transfer momentum), external focus, (EF, i.e., imagine cracking a whip to transfer momentum), and control (CON, i.e., no-focus instruction). A Qualisys 3D motion capture-system was used to track reflective markers attached to the arm, forearm, and hand. Consequently, four phases of the volleyball spike including wind-up, cocking, acceleration, and follow-through were analyzed. A one-way repeated-measure ANOVA using one-dimensional statistical parametric mapping (SPM1d) showed that players achieved greater velocities in the hand (p < 0.01), forearm (p < 0.01), and arm (p < 0.01) using the EF instructions from the start of the wind-up phase to the acceleration phase. Post-hoc (SPM1d-t-tests-paired) analyses indicated significantly greater arm, forearm, and hand velocities during the EF condition, compared to CON (p < 0.01, p < 0.01, and p < 0.01 respectively) and IF (p < 0.01, p < 0.01, and p < 0.01 respectively) conditions. These findings suggest that EF instructions had an immediate impact on increasing volleyball spike velocity from the start of the wind-up phase to the acceleration phase prior to ball contact.

See more in PubMed

Abdollahipour R., Land W. M., Valtr L., Banátová K., Janura M. (2022). External focus facilitates cognitive stability and promotes motor performance of an interceptive task in children. Int. J. Sport Exerc. Psychol. doi: 10.1080/1612197x.2022.2098356 DOI

Abdollahipour R., Nieto M. P., Psotta R., Wulf G. (2017). External focus of attention and autonomy support have additive benefits for motor performance in children. Psychol. Sport Exerc. 32, 17–24. doi: 10.1016/j.psychsport.2017.05.004 DOI

An J., Wulf G., Kim S. (2013). Increased carry distance and X-factor stretch in golf through an external focus of attention. J. Mot. Learn. Dev. 1, 2–11. doi: 10.1123/jmld.1.1.2 DOI

Bańkosz Z., Winiarski S. (2021). The application of statistical parametric mapping to evaluate differences in topspin backhand between Chinese and polish female table tennis players. Appl. Bionics Biomech. 2021, 1–11. doi: 10.1155/2021/5555874, PMID: PubMed DOI PMC

Bell J. J., Hardy J. (2009). Effects of attentional focus on skilled performance in golf. J. Appl. Sport Psychol. 21, 163–177. doi: 10.1080/10413200902795323 DOI

Chua L. K., Jimenez-Diaz J., Lewthwaite R., Kim T., Wulf G. (2021). Superiority of external attentional focus for motor performance and learning: systematic reviews and meta-analyses. Psychol. Bull. 147, 618–645. doi: 10.1037/bul0000335, PMID: PubMed DOI

Davids K., Glazier P., Araújo D., Bartlett R. (2003). Movement systems as dynamical systems. Sports Med. 33, 245–260. doi: 10.2165/00007256-200333040-00001 PubMed DOI

Dearing J. (2018). Volleyball Fundamentals, 2nd Edn. Champaign, Illinois: Human Kinetics.

Escamilla R. F., Fleisig G. S., Barrentine S. W., Zheng N., Andrews J. R. (1998). Kinematic comparisons of throwing different types of baseball pitches. J. Appl. Biomech. 14, 1–23. doi: 10.1123/jab.14.1.1 DOI

Faity G., Mottet D., Froger J. (2022). Validity and reliability of Kinect v2 for quantifying upper body kinematics during seated reaching. Sensors 22:2735. doi: 10.3390/s22072735, PMID: PubMed DOI PMC

Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/bf03193146, PMID: PubMed DOI

Fuchs P. X., Menzel H. J. K., Guidotti F., Bell J., von Duvillard S. P., Wagner H. (2019). Spike jump biomechanics in male versus female elite volleyball players. J. Sports Sci. 37, 2411–2419. doi: 10.1080/02640414.2019.1639437, PMID: PubMed DOI

Halperin I., Chapman D. W., Martin D. T., Abbiss C. (2017). The effects of attentional focus instructions on punching velocity and impact forces among trained combat athletes. J. Sports Sci. 35, 500–507. doi: 10.1080/02640414.2016.1175651, PMID: PubMed DOI

Hayter A. J. (1986). The maximum familywise error rate of Fisher’s least significant difference test. J. Am. Stat. Assoc. 81, 1000–1004. doi: 10.1080/01621459.1986.10478364 DOI

Herring R. M., Chapman A. E. (1992). Effects of changes in segmental values and timing of both torque and torque reversal in simulated throws. J. Biomech. 25, 1173–1184. doi: 10.1016/0021-9290(92)90073-a, PMID: PubMed DOI

Howell D. C. (2010). Statistical Methods for Psychology, 7th Edn. Belmont, CA: Wadsworth Cengage Learning.

Kershner A. L., Fry A. C., Cabarkapa D. (2019). Effect of internal volleyball spike. External focus of attention instructions on countermovement jump variables in NCAA division I student-athletes. J. Strength Cond. Res. 33, 1467–1473. doi: 10.1519/jsc.0000000000003129, PMID: PubMed DOI

Lam W. K., Maxwell J. P., Masters R. (2009a). Analogy learning and the performance of motor skills under pressure. J. Sport Exerc. Psychol. 31, 337–357. doi: 10.1123/jsep.31.3.337, PMID: PubMed DOI

Lam W. K., Maxwell J. P., Masters R. S. W. (2009b). Analogy versus explicit learning of a modified basketball shooting task: performance and kinematic outcomes. J. Sports Sci. 27, 179–191. doi: 10.1080/02640410802448764, PMID: PubMed DOI

Land W. M., Tenenbaum G., Ward P., Marquardt C. (2013). Examination of visual information as a mediator of external focus benefits. J. Sport Exerc. Psychol. 35, 250–259. doi: 10.1123/jsep.35.3.250, PMID: PubMed DOI

Lima R., Afonso J., Silva A. F., Silva R., Clemente F. M. (2021). Relationships between ball speed and arm speed during the volleyball serve in youth elite male players, and why statistical significance might be misleading. Proc. Inst. Mech. Eng. P. J. Sport. Eng. Technol. 235, 122–130. doi: 10.1177/1754337120971448 DOI

Lohse K. R., Sherwood D. E. (2011). Defining the focus of attention: effects of attention on perceived exertion and fatigue. Front. Psychol. 2:332. doi: 10.3389/fpsyg.2011.00332, PMID: PubMed DOI PMC

Lohse K. R., Sherwood D. E., Healy A. F. (2014). On the advantage of an external focus of attention: a benefit to learning or performance? Hum. Mov. Sci. 33, 120–134. doi: 10.1016/j.humov.2013.07.022 PubMed DOI

Maffiuletti N. A., Aagaard P., Blazevich A. J., Folland J., Tillin N., Duchateau J. (2016). Rate of force development: physiological and methodological considerations. Eur. J. Appl. Physiol. 116, 1091–1116. doi: 10.1007/s00421-016-3346-6, PMID: PubMed DOI PMC

McKay B., Wulf G., Lewthwaite R., Nordin A. (2015). The self: your own worst enemy? A test of the self-invoking trigger hypothesis. Q. J. Exp. Psychol. 68, 1910–1919. doi: 10.1080/17470218.2014.997765, PMID: PubMed DOI

Penny W. D., Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E. (Eds.) (2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images. Amsterdam: Elsevier.

Porter J. M., Sims B. (2013). Altering focus of attention influences elite athletes sprinting performance. Int. J. Coach. Sci. 7, 41–51.

Putnam C. A. (1993). Sequential motions of body segments in striking and throwing skills: descriptions and explanations. J. Biomech. 26, 125–135. doi: 10.1016/0021-9290(93)90084-r, PMID: PubMed DOI

Reeser J. C., Fleisig G. S., Bolt B., Ruan M. (2010). Upper limb biomechanics during the volleyball serve and spike. Sports Health 2, 368–374. doi: 10.1177/1941738110374624, PMID: PubMed DOI PMC

Robinson M. A., Vanrenterghem J., Pataky T. C. (2021). Sample size estimation for biomechanical waveforms: current practice, recommendations and a comparison to discrete power analysis. J. Biomech. 122:110451. doi: 10.1016/j.jbiomech.2021.110451, PMID: PubMed DOI

Rokito A. S., Jobe F. W., Pink M. M., Perry J., Brault J. (1998). Electromyographic analysis of shoulder function during the volleyball serve and spike. J. Shoulder Elb. Surg. 7, 256–263. doi: 10.1016/s1058-2746(98)90054-4, PMID: PubMed DOI

Sarvestan J., Ataabadi P. A., Yazdanbakhsh F., Abbasi S., Abbasi A., Svoboda Z. (2021). Lower limb joint angles and their variability during uphill walking. Gait Posture 90, 434–440. doi: 10.1016/j.gaitpost.2021.09.195, PMID: PubMed DOI

Sarvestan J., Svoboda Z., Linduška P. (2020). Kinematic differences between successful and faulty spikes in young volleyball players. J. Sports Sci. 38, 2314–2320. doi: 10.1080/02640414.2020.1782008, PMID: PubMed DOI

Serrien B., Goossens M., Baeyens J. P. (2018). Proximal-to-distal sequencing and coordination variability in the volleyball spike of elite youth players: effects of gender and growth. J. Mot. Learn. Dev. 6, 250–266. doi: 10.1123/jmld.2017-0049 DOI

Simons D. J., Chabris C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074. doi: 10.1068/p281059, PMID: PubMed DOI

Singh H., Wulf G. (2022). Mind over body: creating an external focus for sport skills. Eur. J. Sport Sci. 22, 610–616. doi: 10.1080/17461391.2021.1887367, PMID: PubMed DOI

Sink C. A., Mvududu N. H. (2010). Statistical power, sampling, and effect sizes: three keys to research relevancy. Couns. Outcome Res. Eval. 1, 1–18. doi: 10.1177/2150137810373613 DOI

Urdan T. C. (2010). Statistics in Plain English (3rd Edn) New York: Routledge.

Valadés D., Palao J. M., Aúnsolo Á., Ureña A. (2016). Correlation between ball speed of the spike and the strength condition of a professional women’s volleyball team during the season. Kinesiology 48, 87–94. doi: 10.26582/k.48.1.7 DOI

Wagner H., Buchecker M., Von Duvillard S. P., Müller E. (2010). Kinematic description of elite volleyball spike. Low level players in team-handball jump throw. J. Sports Sci. Med. 9, 15–23., PMID: PubMed PMC

Wagner H., Pfusterschmied J., von Duvillard S. P., Müller E. (2011). Performance and kinematics of various throwing techniques in team-handball. J. Sports Sci. Med. 10, 73–80., PMID: PubMed PMC

Wagner H., Pfusterschmied J., Von Duvillard S. P., Müller E. (2012). Skill-dependent proximal-to-distal sequence in team-handball throwing. J. Sports Sci. 30, 21–29. doi: 10.1080/02640414.2011.617773, PMID: PubMed DOI

Wang S. M., Kuo L. C., Ouyang W. C., Hsu H. M., Ma H. I. (2018). Effects of object size and distance on reaching kinematics in patients with schizophrenia. Hong Kong J. Occup. Ther. 31, 22–29. doi: 10.1177/1569186118759610, PMID: PubMed DOI PMC

Wulf G. (2013). Attentional focus and motor learning: a review of 15 years. Int. Rev. Sport Exerc. Psychol. 6, 77–104. doi: 10.1080/1750984x.2012.723728 DOI

Wulf G., Lauterbach B., Toole T. (1999). The learning advantages of an external focus of attention in golf. Res. Q. Exerc. Sport 70, 120–126. doi: 10.1080/02701367.1999.10608029, PMID: PubMed DOI

Wulf G., Lewthwaite R. (2016). Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon. Bull. Rev. 23, 1382–1414. doi: 10.3758/s13423-015-0999-9, PMID: PubMed DOI

Wulf G., McConnel N., Gärtner M., Schwarz A. (2002). Enhancing the learning of sport skills through external-focus feedback. J. Mot. Behav. 34, 171–182. doi: 10.1080/00222890209601939, PMID: PubMed DOI

Zwierko T., Osinski W., Lubinski W., Czepita D., Florkiewicz B. (2010). Speed of visual sensorimotor processes and conductivity of visual pathway in volleyball players. J. Hum. Kinet. 23, 21–27. doi: 10.2478/v10078-010-0003-8 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...