Replacement Flame-Retardant 2-Ethylhexyldiphenyl Phosphate (EHDPP) Disrupts Hepatic Lipidome: Evidence from Human 3D Hepatospheroid Cell Culture

. 2023 Feb 07 ; 57 (5) : 2006-2018. [epub] 20230124

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36693630

The present study aims to evaluate the effects of repeated exposure to 2-ethylhexyldiphenyl phosphate (EHDPP) on human liver cells. In vitro three-dimensional (3D) hepatospheroid cell culture was utilized to explore the potential mechanisms of EHDPP-mediated metabolic disruption through morphological, transcriptional, and biochemical assays. Lipidomics analysis was performed on the individual hepatospheroids to investigate the effects on intracellular lipid profiles, followed by hepatospheroid morphology, growth, functional parameters, and cytotoxicity evaluation. The possible mechanisms were delineated using the gene-level analysis by assessing the expression of key genes encoding for hepatic lipid metabolism. We revealed that exposure to EHDPP at 1 and 10 μM for 7 days alters the lipid profile of human 3D hepatospheroids. Dysregulation in several lipid classes, including sterol lipids (cholesterol esters), sphingolipids (dihydroceramide, hexosylceramide, ceramide, sphingomyelin), glycerolipids (triglycerides), glycerophospholipids, and fatty acyls, was noted along with alteration in genes including ACAT1, ACAT2, CYP27A1, ABCA1, GPAT2, PNPLA2, PGC1α, and Nrf2. Our study brings a novel insight into the metabolic disrupting effects of EHDPP and demonstrates the utility of hepatospheroids as an in vitro cell culture model complemented with omics technology (e.g., lipidomics) for mechanistic toxicity studies.

Zobrazit více v PubMed

Stapleton H. M.; Klosterhaus S.; Eagle S.; Fuh J.; Meeker J. D.; Blum A.; Webster T. F. Detection of Organophosphate Flame Retardants in Furniture Foam and U.S. House Dust. Environ. Sci. Technol. 2009, 43, 7490–7495. 10.1021/es9014019. PubMed DOI PMC

Cristale J.; Aragão Belé T. G.; Lacorte S.; Rodrigues de Marchi M. R. Occurrence and Human Exposure to Brominated and Organophosphorus Flame Retardants via Indoor Dust in a Brazilian City. Environ. Pollut. 2018, 237, 695–703. 10.1016/j.envpol.2017.10.110. PubMed DOI

Poma G.; Glynn A.; Malarvannan G.; Covaci A.; Darnerud P. O. Dietary Intake of Phosphorus Flame Retardants (PFRs) Using Swedish Food Market Basket Estimations. Food Chem. Toxicol. 2017, 100, 1–7. 10.1016/j.fct.2016.12.011. PubMed DOI

Xu F.; Tay J. H.; Covaci A.; Padilla-Sánchez J. A.; Papadopoulou E.; Haug L. S.; Neels H.; Sellström U.; de Wit C. A. Assessment of Dietary Exposure to Organohalogen Contaminants, Legacy and Emerging Flame Retardants in a Norwegian Cohort. Environ. Int. 2017, 102, 236–243. 10.1016/j.envint.2017.03.009. PubMed DOI

Zhao L.; Jian K.; Su H.; Zhang Y.; Li J.; Letcher R. J.; Su G. Organophosphate Esters (OPEs)in Chinese Foodstuffs: Dietary Intake Estimation via a Market Basket Method, and Suspect Screening Using High-Resolution Mass Spectrometry. Environ. Int. 2019, 128, 343–352. 10.1016/j.envint.2019.04.055. PubMed DOI

Poma G.; Sales C.; Bruyland B.; Christia C.; Goscinny S.; Van Loco J.; Covaci A. Occurrence of Organophosphorus Flame Retardants and Plasticizers (PFRs) in Belgian Foodstuffs and Estimation of the Dietary Exposure of the Adult Population. Environ. Sci. Technol. 2018, 52, 2331–2338. 10.1021/acs.est.7b06395. PubMed DOI

Hou M.; Shi Y.; Jin Q.; Cai Y. Organophosphate Esters and Their Metabolites in Paired Human Whole Blood, Serum, and Urine as Biomarkers of Exposure. Environ. Int. 2020, 139, 10569810.1016/J.ENVINT.2020.105698. PubMed DOI

Zhao F.; Kang Q.; Zhang X.; Liu J.; Hu J. Urinary Biomarkers for Assessment of Human Exposure to Monomeric Aryl Phosphate Flame Retardants. Environ. Int. 2019, 124, 259–264. 10.1016/J.ENVINT.2019.01.022. PubMed DOI

Zhao F.; Wan Y.; Zhao H.; Hu W.; Mu D.; Webster T. F.; Hu J. Levels of Blood Organophosphorus Flame Retardants and Association with Changes in Human Sphingolipid Homeostasis. Environ. Sci. Technol. 2016, 50, 8896–8903. 10.1021/acs.est.6b02474. PubMed DOI

Zhao F.; Chen M.; Gao F.; Shen H.; Hu J. Organophosphorus Flame Retardants in Pregnant Women and Their Transfer to Chorionic Villi. Environ. Sci. Technol. 2017, 51, 6489–6497. 10.1021/acs.est.7b01122. PubMed DOI

Noyes P. D.; Haggard D. E.; Gonnerman G. D.; Tanguay R. L. Advanced Morphological - Behavioral Test Platform Reveals Neurodevelopmental Defects in Embryonic Zebrafish Exposed to Comprehensive Suite of Halogenated and Organophosphate Flame Retardants. Toxicol. Sci. 2015, 145, 177–195. 10.1093/toxsci/kfv044. PubMed DOI PMC

Jarema K. A.; Hunter D. L.; Shaffer R. M.; Behl M.; Padilla S. Acute and Developmental Behavioral Effects of Flame Retardants and Related Chemicals in Zebrafish. Neurotoxicol. Teratol. 2015, 52, 194–209. 10.1016/j.ntt.2015.08.010. PubMed DOI PMC

Glazer L.; Hawkey A. B.; Wells C. N.; Drastal M.; Odamah K. A.; Behl M.; Levin E. D. Developmental Exposure to Low Concentrations of Organophosphate Flame Retardants Causes Life-Long Behavioral Alterations in Zebrafish. Toxicol. Sci. 2018, 165, 487–498. 10.1093/toxsci/kfy173. PubMed DOI PMC

Bajard L.; Negi C. K.; Mustieles V.; Melymuk L.; Jomini S.; Barthelemy-Berneron J.; Fernandez M. F.; Blaha L. Endocrine Disrupting Potential of Replacement Flame Retardants – Review of Current Knowledge for Nuclear Receptors Associated with Reproductive Outcomes. Environ. Int. 2021, 153, 10655010.1016/j.envint.2021.106550. PubMed DOI

Klose J.; Pahl M.; Bartmann K.; Bendt F.; Blum J.; Dolde X.; Förster N.; Holzer A. K.; Hübenthal U.; Keßel H. E.; Koch K.; Masjosthusmann S.; Schneider S.; Stürzl L. C.; Woeste S.; Rossi A.; Covaci A.; Behl M.; Leist M.; Tigges J.; Fritsche E. Neurodevelopmental Toxicity Assessment of Flame Retardants Using a Human DNT in Vitro Testing Battery. Cell Biol. Toxicol. 2021, 781–807. 10.1007/s10565-021-09603-2. PubMed DOI PMC

Yan S.; Wang D.; Teng M.; Meng Z.; Yan J.; Li R.; Jia M.; Tian S.; Zhou Z.; Zhu W. Perinatal Exposure to 2-Ethylhexyl Diphenyl Phosphate (EHDPHP) Affected the Metabolic Homeostasis of Male Mouse Offspring: Unexpected Findings Help to Explain Dose- and Diet- Specific Phenomena. J. Hazard. Mater. 2020, 388, 12203410.1016/j.jhazmat.2020.122034. PubMed DOI

Sun W.; Duan X.; Chen H.; Zhang L.; Sun H. Adipogenic Activity of 2-Ethylhexyl Diphenyl Phosphate via Peroxisome Proliferator-Activated Receptor γ Pathway. Sci. Total Environ. 2020, 711, 13481010.1016/j.scitotenv.2019.134810. PubMed DOI

Zhu L.; Huang X.; Li Z.; Cao G.; Zhu X.; She S.; Huang T.; Lu G. Evaluation of Hepatotoxicity Induced by 2-Ethylhexyldiphenyl Phosphate Based on Transcriptomics and Its Potential Metabolism Pathway in Human Hepatocytes. J. Hazard. Mater. 2021, 413, 12528110.1016/j.jhazmat.2021.125281. PubMed DOI

Zhao F.; Li Y.; Zhang S.; Ding M.; Hu J. Association of Aryl Organophosphate Flame Retardants Triphenyl Phosphate and 2-Ethylhexyl Diphenyl Phosphate with Human Blood Triglyceride and Total Cholesterol Levels. Environ. Sci. Technol. Lett. 2019, 6, 532.10.1021/acs.estlett.9b00417. DOI

Sen P.; Qadri S.; Luukkonen P. K.; Ragnarsdottir O.; McGlinchey A.; Jäntti S.; Juuti A.; Arola J.; Schlezinger J. J.; Webster T. F.; Orešič M.; Yki-Järvinen H.; Hyötyläinen T. Exposure to Environmental Contaminants Is Associated with Altered Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2021, 283.10.1016/J.JHEP.2021.09.039. PubMed DOI

Negi C. K.; Bajard L.; Kohoutek J.; Blaha L. An Adverse Outcome Pathway Based in Vitro Characterization of Novel Flame Retardants-Induced Hepatic Steatosis. Environ. Pollut. 2021, 289, 11785510.1016/j.envpol.2021.117855. PubMed DOI

Bell C. C.; Hendriks D. F. G.; Moro S. M. L.; Ellis E.; Walsh J.; Renblom A.; Fredriksson Puigvert L.; Dankers A. C. A.; Jacobs F.; Snoeys J.; Sison-Young R. L.; Jenkins R. E.; Nordling Å.; Mkrtchian S.; Park B. K.; Kitteringham N. R.; Goldring C. E. P.; Lauschke V. M.; Ingelman-Sundberg M. Characterization of Primary Human Hepatocyte Spheroids as a Model System for Drug-Induced Liver Injury, Liver Function and Disease. Sci. Rep. 2016, 6, 2518710.1038/srep25187. PubMed DOI PMC

Ramaiahgari S. C.; Den Braver M. W.; Herpers B.; Terpstra V.; Commandeur J. N. M.; Van De Water B.; Price L. S. A 3D in Vitro Model of Differentiated HepG2 Cell Spheroids with Improved Liver-like Properties for Repeated Dose High-Throughput Toxicity Studies. Arch. Toxicol. 2014, 88, 1083–1095. 10.1007/s00204-014-1215-9. PubMed DOI

Gong X.; Lin C.; Cheng J.; Su J.; Zhao H.; Liu T.; Wen X.; Zhao P. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. PLoS One 2015, 10, e013034810.1371/journal.pone.0130348. PubMed DOI PMC

Livak K. J.; Schmittgen T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 C T Method. Methods 2001, 25, 402–408. 10.1006/meth.2001.1262. PubMed DOI

Fahy E.; Subramaniam S.; Murphy R. C.; Nishijima M.; Raetz C. R. H.; Shimizu T.; Spener F.; Van Meer G.; Wakelam M. J. O.; Dennis E. A. Update of the LIPID MAPS Comprehensive Classification System for Lipids. J. Lipid Res. 2009, S9–S14. 10.1194/jlr.R800095-JLR200. PubMed DOI PMC

Foulds C. E.; Treviño L. S.; York B.; Walker C. L. Endocrine-Disrupting Chemicals and Fatty Liver Disease. Nat. Rev. Endocrinol. 2017, 445–457. 10.1038/nrendo.2017.42. PubMed DOI PMC

Vinken M. Adverse Outcome Pathways and Drug-Induced Liver Injury Testing. Chem. Res. Toxicol. 2015, 1391–1397. 10.1021/acs.chemrestox.5b00208. PubMed DOI PMC

Hu W.; Gao F.; Zhang H.; Hiromori Y.; Arakawa S.; Nagase H.; Nakanishi T.; Hu J. Activation of Peroxisome Proliferator-Activated Receptor Gamma and Disruption of Progesterone Synthesis of 2-Ethylhexyl Diphenyl Phosphate in Human Placental Choriocarcinoma Cells: Comparison with Triphenyl Phosphate. Environ. Sci. Technol. 2017, 51, 4061–4068. 10.1021/acs.est.7b00872. PubMed DOI

Fey S. J.; Wrzesinski K. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line. Toxicol. Sci. 2012, 127, 403.10.1093/TOXSCI/KFS122. PubMed DOI PMC

Bell C. C.; Dankers A. C. A.; Lauschke V. M.; Sison-Young R.; Jenkins R.; Rowe C.; Goldring C. E.; Park K.; Regan S. L.; Walker T.; Schofield C.; Baze A.; Foster A. J.; Williams D. P.; van de Ven A. W. M.; Jacobs F.; van Houdt J.; Lähteenmäki T.; Snoeys J.; Juhila S.; Richert L.; Ingelman-Sundberg M. Comparison of Hepatic 2D Sandwich Cultures and 3d Spheroids for Long-Term Toxicity Applications: A Multicenter Study. Toxicol. Sci. 2018, 162, 655–666. 10.1093/toxsci/kfx289. PubMed DOI PMC

Shen J.; Zhang Y.; Yu N.; Crump D.; Li J.; Su H.; Letcher R. J.; Su G. Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. Environ. Sci. Technol. 2019, 53, 2151–2160. 10.1021/acs.est.8b06246. PubMed DOI

Ballesteros-Gómez A.; Erratico C. A.; Van den Eede N.; Ionas A. C.; Leonards P. E. G.; Covaci A. In Vitro Metabolism of 2-Ethylhexyldiphenyl Phosphate (EHDPHP) by Human Liver Microsomes. Toxicol. Lett. 2015, 232, 203–212. 10.1016/j.toxlet.2014.11.007. PubMed DOI

Murosaki S.; Lee T. R.; Muroyama K.; Shin E. S.; Cho S. Y.; Yamamoto Y.; Lee S. J. A Combination of Caffeine, Arginine, Soy Isoflavones, and l-Carnitine Enhances Both Lipolysis and Fatty Acid Oxidation in 3T3-L1 and HepG2 Cells in Vitro and in KK Mice in Vivo. J. Nutr. 2007, 137, 2252–2257. 10.1093/JN/137.10.2252. PubMed DOI

Noland R. C.; Koves T. R.; Seiler S. E.; Lum H.; Lust R. M.; Ilkayeva O.; Stevens R. D.; Hegardt F. G.; Muoio D. M. Carnitine Insufficiency Caused by Aging and Overnutrition Compromises Mitochondrial Performance and Metabolic Control. J. Biol. Chem. 2009, 284, 22840–22852. 10.1074/jbc.M109.032888. PubMed DOI PMC

Jun D. W.; Cho W. K.; Jun J. H.; Kwon H. J.; Jang K. S.; Kim H. J.; Jeon H. J.; Lee K. N.; Lee H. L.; Lee O. Y.; Yoon B. C.; Choi H. S.; Hahm J. S.; Lee M. H. Prevention of Free Fatty Acid-Induced Hepatic Lipotoxicity by Carnitine via Reversal of Mitochondrial Dysfunction. Liver Int. 2011, 31, 1315–1324. 10.1111/j.1478-3231.2011.02602.x. PubMed DOI

Li J. L.; Wang Q. Y.; Luan H. Y.; Kang Z. C.; Wang C. B. Effects of L-Carnitine against Oxidative Stress in Human Hepatocytes: Involvement of Peroxisome Proliferator-Activated Receptor Alpha. J. Biomed. Sci. 2012, 19, 3210.1186/1423-0127-19-32. PubMed DOI PMC

Puri P.; Baillie R. A.; Wiest M. M.; Mirshahi F.; Choudhury J.; Cheung O.; Sargeant C.; Contos M. J.; Sanyal A. J. A Lipidomic Analysis of Nonalcoholic Fatty Liver Disease. Hepatology 2007, 46, 1081–1090. 10.1002/hep.21763. PubMed DOI

Rein-Fischboeck L.; Haberl E. M.; Pohl R.; Feder S.; Liebisch G.; Krautbauer S.; Buechler C. Variations in Hepatic Lipid Species of Age-Matched Male Mice Fed a Methionine-Choline-Deficient Diet and Housed in Different Animal Facilities. Lipids Health Dis. 2019, 18, 17210.1186/s12944-019-1114-4. PubMed DOI PMC

Devaux P. F. Static and Dynamic Lipid Asymmetry in Cell Membranes. Biochemistry 1991, 30, 1163–1173. 10.1021/bi00219a001. PubMed DOI

van der Veen J. N.; Kennelly J. P.; Wan S.; Vance J. E.; Vance D. E.; Jacobs R. L. The Critical Role of Phosphatidylcholine and Phosphatidylethanolamine Metabolism in Health and Disease. Biochim. Biophys. Acta, Biomembr. 2017, 1558–1572. 10.1016/j.bbamem.2017.04.006. PubMed DOI

Li Z.; Agellon L. B.; Allen T. M.; Umeda M.; Jewell L.; Mason A.; Vance D. E. The Ratio of Phosphatidylcholine to Phosphatidylethanolamine Influences Membrane Integrity and Steatohepatitis. Cell Metab. 2006, 3, 321–331. 10.1016/j.cmet.2006.03.007. PubMed DOI

Sekas G.; Patton G. M.; Lincoln E. C.; Robins S. J. Origin of Plasma Lysophosphatidylcholine: Evidence for Direct Hepatic Secretion in the Rat. J. Lab. Clin. Med. 1985, 105, 185–189. 10.5555/URI:PII:0022214385900083. PubMed DOI

Kakisaka K.; Cazanave S. C.; Fingas C. D.; Guicciardi M. E.; Bronk S. F.; Werneburg N. W.; Mott J. L.; Gores G. J. Mechanisms of Lysophosphatidylcholine-Induced Hepatocyte Lipoapoptosis. Am. J. Physiol.: Gastrointest. Liver Physiol. 2012, 302, 77–84. 10.1152/ajpgi.00301.2011. PubMed DOI PMC

Hollie N. I.; Cash J. G.; Matlib M. A.; Wortman M.; Basford J. E.; Abplanalp W.; Hui D. Y. Micromolar Changes in Lysophosphatidylcholine Concentration Cause Minor Effects on Mitochondrial Permeability but Major Alterations in Function. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2014, 1841, 888–895. 10.1016/j.bbalip.2013.11.013. PubMed DOI PMC

Yamamoto Y.; Sakurai T.; Chen Z.; Inoue N.; Chiba H.; Hui S.-P. Lysophosphatidylethanolamine Affects Lipid Accumulation and Metabolism in a Human Liver-Derived Cell Line. Nutrients 2022, 14, 57910.3390/NU14030579. PubMed DOI PMC

Epand R. M. Features of the Phosphatidylinositol Cycle and Its Role in Signal Transduction. J. Membr. Biol. 2017, 250, 353–366. 10.1007/s00232-016-9909-y. PubMed DOI

Burgess J. W.; Boucher J.; Neville T. A. M.; Rouillard P.; Stamler C.; Zachariah S.; Sparks D. L. Phosphatidylinositol Promotes Cholesterol Transport and Excretion. J. Lipid Res. 2003, 44, 1355–1363. 10.1194/jlr.M300062-JLR200. PubMed DOI

Merrill A. H. Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics. Chem. Rev. 2011, 6387–6422. 10.1021/cr2002917. PubMed DOI PMC

Lachkar F.; Ferre P.; Foufelle F.; Papaioannou A. Dihydroceramides: Their Emerging Physiological Roles and Functions in Cancer and Metabolic Diseases. Am. J. Physiol.: Endocrinol. Metab. 2021, E122–E130. 10.1152/AJPENDO.00330.2020. PubMed DOI

Krautbauer S.; Meier E. M.; Rein-Fischboeck L.; Pohl R.; Weiss T. S.; Sigruener A.; Aslanidis C.; Liebisch G.; Buechler C. Ceramide and Polyunsaturated Phospholipids Are Strongly Reduced in Human Hepatocellular Carcinoma. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2016, 1861, 1767–1774. 10.1016/j.bbalip.2016.08.014. PubMed DOI

Son S. M.; Park S. J.; Stamatakou E.; Vicinanza M.; Menzies F. M.; Rubinsztein D. C. Leucine Regulates Autophagy via Acetylation of the MTORC1 Component Raptor. Nat. Commun. 2020, 11, 314810.1038/s41467-020-16886-2. PubMed DOI PMC

Khan S. R.; Manialawy Y.; Obersterescu A.; Cox B. J.; Gunderson E. P.; Wheeler M. B. Diminished Sphingolipid Metabolism, a Hallmark of Future Type 2 Diabetes Pathogenesis, Is Linked to Pancreatic β Cell Dysfunction. iScience 2020, 23, 10156610.1016/j.isci.2020.101566. PubMed DOI PMC

Hutchins P. M.; Murphy R. C. Cholesteryl Ester Acyl Oxidation and Remodeling in Murine Macrophages: Formation of Oxidized Phosphatidylcholine. J. Lipid Res. 2012, 53, 1588–1597. 10.1194/jlr.M026799. PubMed DOI PMC

Wang H. H.; Garruti G.; Liu M.; Portincasa P.; Wang D. Q. H. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances in Reverse Cholesterol Transport. Ann. Hepatol. 2017, 16, s27–s42. 10.5604/01.3001.0010.5495. PubMed DOI

Aluru N.; G Hallanger I.; McMonagle H.; Harju M. Hepatic Gene Expression Profiling of Atlantic Cod (Gadus morhua) Liver after Exposure to Organophosphate Flame Retardants Revealed Altered Cholesterol Biosynthesis and Lipid Metabolism. Environ. Toxicol. Chem. 2021, 40, 1639–1648. 10.1002/etc.5014. PubMed DOI

Liu J.; Chang C. C. Y.; Westover E. J.; Covey D. F.; Chang T. Y. Investigating the Allosterism of Acyl-CoA:Cholesterol Acyltransferase (ACAT) by Using Various Sterols: In Vitro and Intact Cell Studies. Biochem. J. 2005, 391, 389–397. 10.1042/BJ20050428. PubMed DOI PMC

Cases S.; Novak S.; Zheng Y.-W.; Myers H. M.; Lear S. R.; Sande E.; Welch C. B.; Lusis A. J.; Spencer T. A.; Krause B. R.; Erickson S. K.; Farese R. V. ACAT-2, A Second Mammalian Acyl-CoA:Cholesterol Acyltransferase. J. Biol. Chem. 1998, 273, 26755–26764. 10.1074/jbc.273.41.26755. PubMed DOI

Boveris A.; Cadenas E. Mitochondrial Production of Hydrogen Peroxide Regulation by Nitric Oxide and the Role of Ubisemiquinone. IUBMB Life 2001, 50, 245–250. 10.1080/713803732. PubMed DOI

Zhou Y.; Liao H.; Yin S.; Wang P.; Ye X.; Zhang J. Aryl-, Halogenated- and Alkyl- Organophosphate Esters Induced Oxidative Stress, Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation in HepG2 Cells. Environ. Pollut. 2022, 12055910.1016/J.ENVPOL.2022.120559. PubMed DOI

Negi C. K.; Jena G. Nrf2, a Novel Molecular Target to Reduce Type 1 Diabetes Associated Secondary Complications: The Basic Considerations. Eur. J. Pharmacol. 2019, 843, 12–26. 10.1016/j.ejphar.2018.10.026. PubMed DOI

Huang J.; Tabbi-Anneni I.; Gunda V.; Wang L. Transcription Factor Nrf2 Regulates SHP and Lipogenic Gene Expression in Hepatic Lipid Metabolism. Am. J. Physiol.: Gastrointest. Liver Physiol. 2010, 299, G1211.10.1152/AJPGI.00322.2010. PubMed DOI PMC

Li S.; Tan H. Y.; Wang N.; Zhang Z. J.; Lao L.; Wong C. W.; Feng Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087.10.3390/IJMS161125942. PubMed DOI PMC

Lin J.; Handschin C.; Spiegelman B. M. Metabolic Control through the PGC-1 Family of Transcription Coactivators. Cell Metab. 2005, 361–370. 10.1016/j.cmet.2005.05.004. PubMed DOI

Puigserver P.; Spiegelman B. M. Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α): Transcriptional Coactivator and Metabolic Regulator. Endocr. Rev. 2003, 78–90. 10.1210/er.2002-0012. PubMed DOI

Shin D. J.; Campos J. A.; Gil G.; Osborne T. F. PGC-1α Activates CYP7A1 and Bile Acid Biosynthesis. J. Biol. Chem. 2003, 278, 50047–50052. 10.1074/jbc.M309736200. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...