Next-Generation Morphometry for pathomics-data mining in histopathology
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36709324
PubMed Central
PMC9884209
DOI
10.1038/s41467-023-36173-0
PII: 10.1038/s41467-023-36173-0
Knihovny.cz E-zdroje
- MeSH
- glomerulus * patologie MeSH
- ledviny * patologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pathology diagnostics relies on the assessment of morphology by trained experts, which remains subjective and qualitative. Here we developed a framework for large-scale histomorphometry (FLASH) performing deep learning-based semantic segmentation and subsequent large-scale extraction of interpretable, quantitative, morphometric features in non-tumour kidney histology. We use two internal and three external, multi-centre cohorts to analyse over 1000 kidney biopsies and nephrectomies. By associating morphometric features with clinical parameters, we confirm previous concepts and reveal unexpected relations. We show that the extracted features are independent predictors of long-term clinical outcomes in IgA-nephropathy. We introduce single-structure morphometric analysis by applying techniques from single-cell transcriptomics, identifying distinct glomerular populations and morphometric phenotypes along a trajectory of disease progression. Our study provides a concept for Next-generation Morphometry (NGM), enabling comprehensive quantitative pathology data mining, i.e., pathomics.
Department of Cardiovascular Sciences University of Leicester Leicester United Kingdom
Department of Nephrology and Immunology RWTH Aachen University Clinic Aachen Germany
Fondazione Ricerca Molinette Torino Italy
Institute for Computational Genomics RWTH Aachen University Clinic Aachen Germany
Institute of Pathology RWTH Aachen University Clinic Aachen Germany
Regina Margherita Children's University Hospital Torino Italy
Zobrazit více v PubMed
Roufosse C, et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation. 2018;102:1795–1814. PubMed PMC
Working Group of the International IgA Nephropathy Network and the Renal Pathology Society. et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76:534–545. PubMed
Loupy A, et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transpl. 2020;20:2318–2331. PubMed PMC
Trimarchi H, et al. Oxford Classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017;91:1014–1021. PubMed
Bellur SS, et al. Reproducibility of the Oxford classification of immunoglobulin A nephropathy, impact of biopsy scoring on treatment allocation and clinical relevance of disagreements: evidence from the VALidation of IGA study cohort. Nephrol. Dial. Transpl. 2019;34:1681–1690. PubMed
Wilhelmus S, et al. Interobserver agreement on histopathological lesions in class III or IV lupus nephritis. Clin. J. Am. Soc. Nephrol. 2015;10:47–53. PubMed PMC
Boor P. Artificial intelligence in nephropathology. Nat. Rev. Nephrol. 2020;16:4–6. PubMed
Barisoni L, Lafata KJ, Hewitt SM, Madabhushi A, Balis UGJ. Digital pathology and computational image analysis in nephropathology. Nat. Rev. Nephrol. 2020;16:669–685. PubMed PMC
van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat. Med. 2021;27:775–784. PubMed
Bulten W, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 2020;21:233–241. PubMed
Kanavati F, et al. A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images. Sci. Rep. 2021;11:8110. PubMed PMC
Kather JN, et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer. 2020;1:789–799. PubMed PMC
Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept “black box” medicine? Ann. Intern. Med. 2020;172:59–60. PubMed
Basu S, Kolouri S, Rohde GK. Detecting and visualizing cell phenotype differences from microscopy images using transport-based morphometry. Proc. Natl Acad. Sci. USA. 2014;111:3448–3453. PubMed PMC
Ilić S, Stojiljković N, Sokolović D, Jovanović I, Stojanović N. Morphometric analysis of structural renal alterations and beneficial effects of aminoguanidine in acute kidney injury induced by cisplatin in rats. Can. J. Physiol. Pharmacol. 2020;98:117–123. PubMed
Rawat RR, Ruderman D, Macklin P, Rimm DL, Agus DB. Correlating nuclear morphometric patterns with estrogen receptor status in breast cancer pathologic specimens. NPJ Breast Cancer. 2018;4:32. PubMed PMC
Ruffinatti FA, Genova T, Mussano F, Munaron L. MORPHEUS: an automated tool for unbiased and reproducible cell morphometry. J. Cell. Physiol. 2020;235:10110–10115. PubMed
Zimmermann M, et al. Deep learning-based molecular morphometrics for kidney biopsies. JCI Insight. 2021;6:e144779. PubMed PMC
Bouteldja N, et al. Deep learning-based segmentation and quantification in experimental kidney histopathology. J. Am. Soc. Nephrol. 2021;32:52–68. PubMed PMC
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 2012;8:293–300. PubMed
Bülow RD, Dimitrov D, Boor P, Saez-Rodriguez J. How will artificial intelligence and bioinformatics change our understanding of IgA Nephropathy in the next decade? Semin. Immunopathol. 2021;43:739–752. PubMed PMC
Chung H, et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods. 2021;18:1204–1212. PubMed PMC
Ståhl PL, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78–82. PubMed
Eng C-HL, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature. 2019;568:235–239. PubMed PMC
Fogo A, et al. Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int. 1990;38:115–123. PubMed
Coppo R, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86:828–836. PubMed PMC
Hermsen M, et al. Deep learning-based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 2019;30:1968–1979. PubMed PMC
Kleppe A, et al. Chromatin organisation and cancer prognosis: a pan-cancer study. Lancet Oncol. 2018;19:356–369. PubMed PMC
Taylor-Weiner A, et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH. Hepatology. 2021;74:133–147. PubMed PMC
Yi Z, et al. Deep learning identified pathological abnormalities predictive of graft loss in kidney transplant biopsies. Kidney Int. 2022;101:288–298. PubMed PMC
Hermsen M, et al. Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning. Lab. Invest. 2021;101:970–982. PubMed PMC
Hermsen M, et al. Convolutional neural networks for the evaluation of chronic and inflammatory lesions in kidney transplant biopsies. Am. J. Pathol. 2022;192:1418–1432. PubMed
Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat. Med. 2022;28:31–38. PubMed
Lu MY, et al. AI-based pathology predicts origins for cancers of unknown primary. Nature. 2021;594:106–110. PubMed
Kers J, et al. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. Lancet Digit Health. 2022;4:e18–e26. PubMed
bigpicture. A Central Repository Of Digital Pathology Slides To Boost The Development Of Artificial Intelligence. https://bigpicture.eu/.
Litjens G, Ciompi F, van der Laak J. A decade of gigascience: the challenges of gigapixel pathology images. Gigascience. 2022;11:giac056. PubMed PMC
Jayapandian CP, et al. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney Int. 2021;99:86–101. PubMed PMC
de Boer IH, et al. Rationale and design of the Kidney Precision Medicine Project. Kidney Int. 2021;99:498–510. PubMed PMC
HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature. 2019;574:187–192. PubMed PMC
Levey AS, et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009;150:604–612. PubMed PMC
Bankhead P, et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878. PubMed PMC
Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein K. H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods. 2021;18:203–211. PubMed
Ronneberger, O., Fischer, P. & Brox, T. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 234–241 (Springer International Publishing, 2015).
Liu, L. et al. On the variance of the adaptive learning rate and beyond. arXiv (2019).
Bouteldja N, et al. Tackling stain variability using CycleGAN-based stain augmentation. J. Pathol. Inform. 2022;13:100140. PubMed PMC
Mingqiang, Y., Kidiyo, K. & Joseph, R. Pattern Recognition Techniques, Technology and Applications (InTech, 2008).
Hothorn, T. & Lausen, B. Maximally selected rank statistics in R. R News (2002).
Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29. PubMed PMC
Hsu, L. L. & Culhane, A. C. corral: Single-cell RNA-seq dimension reduction, batch integration, and visualization with correspondence analysis. bioRxiv10.1101/2021.11.24.469874 (2021). PubMed PMC
Angerer P, et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics. 2016;32:1241–1243. PubMed
Granja JM, et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 2021;53:403–411. PubMed PMC
Chen WS, et al. Uncovering axes of variation among single-cell cancer specimens. Nat. Methods. 2020;17:302–310. PubMed PMC
Scholz FW, Stephens MA. K-Sample Anderson-Darling tests. J. Am. Stat. Assoc. 1987;82:918–924.