• This record comes from PubMed

Identification of a novel P2X7 antagonist using structure-based virtual screening

. 2022 ; 13 () : 1094607. [epub] 20230112

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

P2X4 and P2X7 receptors are ATP-gated ion channels, which play important roles in neuropathic and inflammatory pain, and as such they are important drug targets in diseases of inflammatory origin. While several compounds targeting P2X4 and P2X7 receptors have been developed using traditional high-throughput screening approaches, relatively few compounds have been developed using structure-based design. We initially set out to develop compounds targeting human P2X4, by performing virtual screening on the orthosteric (ATP-binding) pocket of a molecular model of human P2X4 based on the crystal structure of the Danio rerio receptor. The screening of a library of approximately 300,000 commercially available drug-like compounds led to the initial selection of 17 compounds; however, none of these compounds displayed a significant antagonist effect at P2X4 in a Fluo-4 ATP-induced calcium influx assay. When the same set of compounds was tested against human P2X7 in an ATP-stimulated Yo-Pro1 dye uptake assay, one compound (an indeno(1,2-b)pyridine derivative; GP-25) reduced the response by greater than 50% when applied at a concentration of 30 µM. GP-25 displayed an IC50 value of 8.7 μM at human P2X7 and 24.4 μM at rat P2X7, and was confirmed to be active using whole-cell patch clamp electrophysiology and not cytotoxic. Schild analysis suggested that mode of action of GP-25 was orthosteric. Screening of a further 16 commercially available analogues of GP-25 led to the discovery of five additional compounds with antagonist activity at human P2X7, enabling us to investigate the structure-activity relationship. Finally, docking of the R- and S-enantiomers of GP-25 into the orthosteric pocket of molecular models of human P2X4 and human P2X7 revealed that, while both enantiomers were able to make multiple interactions between their carboxyl moieties and conserved positively charged amino-acids in human P2X7, only the S-enantiomer of GP-25 was able to do this in human P2X4, potentially explaining the lack of activity of GP-25 at this receptor.

See more in PubMed

Adinolfi E., Cirillo M., Woltersdorf R., Falzoni S., Chiozzi P., Pellegatti P., et al. (2010). Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J. 24, 3393–3404. 10.1096/FJ.09-153601 PubMed DOI

Allsopp R. C., Dayl S., Bin Dayel A., Schmid R., Evans R. J. (2018). Mapping the allosteric action of antagonists A740003 and A438079 reveals a role for the left flipper in ligand sensitivity at P2X7 receptors. Mol. Pharmacol. 93, 553–562. 10.1124/mol.117.111021 PubMed DOI PMC

Allsopp R. C., Dayl S., Schmid R., Evans R. J. (2017). Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci. Rep. 7, 725. 10.1038/S41598-017-00732-5 PubMed DOI PMC

Ase A. R., Honson N. S., Zaghdane H., Pfeifer T. A., Séguéla P. (2015). Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels. Mol. Pharmacol. 87, 606–616. 10.1124/mol.114.096222 PubMed DOI

Bassetto M., De Burghgraeve T., Delang L., Massarotti A., Coluccia A., Zonta N., et al. (2013). Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Res. 98, 12–18. 10.1016/j.antiviral.2013.01.002 PubMed DOI

Beswick P., Wahab B., Honey M. A., Paradowski M., Jiang K., Lochner M., et al. (2019). A challenge finding P2X1 and P2X4 ligands. Neuropharmacology 157, 107674. 10.1016/j.neuropharm.2019.107674 PubMed DOI

Bin Dayel A., Evans R. J., Schmid R. (2019). Mapping the site of action of human P2X7 receptor antagonists AZ11645373, brilliant blue G, KN-62, calmidazolium, and ZINC58368839 to the intersubunit allosteric pocket. Mol. Pharmacol. 96, 355–363. 10.1124/mol.119.116715 PubMed DOI PMC

Bootman M. D., Rietdorf K., Collins T., Walker S., Sanderson M. (2013). Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. Cold Spring Harb. Protoc. 8, 83–99. 10.1101/pdb.top066050 PubMed DOI

Caseley E. A., Muench S. P., Fishwick C. W., Jiang L. H. (2016). Structure-based identification and characterisation of structurally novel human P2X7 receptor antagonists. Biochem. Pharmacol. 116, 130–139. 10.1016/j.bcp.2016.07.020 PubMed DOI PMC

Chataigneau T., Lemoine D., Grutter T. (2013). Exploring the ATP-binding site of P2X receptors. Front. Cell Neurosci. 7, 273. 10.3389/FNCEL.2013.00273 PubMed DOI PMC

Dal Ben D., Buccioni M., Lambertucci C., Marucci G., Spinaci A., Marchenkova A., et al. (2019). Investigation on 2’, 3’-O-substituted ATP derivatives and analogs as novel P2X3 receptor antagonists. ACS Med. Chem. Lett. 10, 493–498. 10.1021/acsmedchemlett.8b00524 PubMed DOI PMC

Dane C., Stokes L., Jorgensen W. T. (2022). P2X receptor antagonists and their potential as therapeutics: A patent review (2010–2021). Expert Opin. Ther. Pat. 32, 769–790. 10.1080/13543776.2022.2069010 PubMed DOI

Fischer R., Kalthof B., Grützmann R., Woltering E., Stelte-Ludwig B., Wuttke M. (2004). Benzofuro-1,4-diazepin-2-one derivatives. Patent No WO2004085440A1. Switzerland: World Intellectual Property Organisation.

Gasparri F., Wengel J., Grutter T., Pless S. A. (2019). Molecular determinants for agonist recognition and discrimination in P2X2 receptors. J. General Physiology 151, 898–911. 10.1085/jgp.201912347 PubMed DOI PMC

Grimes L., Griffiths J., Pasqualetto G., Brancale A., Kemp P. J., Young M. T., et al. (2020). Drosophila taste neurons as an agonist-screening platform for P2X receptors. Sci. Rep. 10, 8292. 10.1038/s41598-020-65169-9 PubMed DOI PMC

Hattori M., Gouaux E. (2012). Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485, 207–212. 10.1038/NATURE11010 PubMed DOI PMC

Hernandez-Olmos V., Abdelrahman A., El-Tayeb A., Freudendahl D., Weinhausen S., Müller C. E. (2012). N-substituted phenoxazine and acridone derivatives: Structure-activity relationships of potent P2X4 receptor antagonists. J. Med. Chem. 55, 9576–9588. 10.1021/jm300845v PubMed DOI

Honore P., Donnelly-Roberts D., Namovic M. T., Hsieh G., Zhu C. Z., Mikusa J. P., et al. (2006). A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2, 2- dimethylpropyl)-2-(3, 4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J. Pharmacol. Exp. Ther. 319, 1376–1385. 10.1124/jpet.106.111559 PubMed DOI

Karasawa A., Kawate T. (2016). Structural basis for subtype-specific inhibition of the P2X7 receptor. Elife 5, e22153. 10.7554/eLife.22153 PubMed DOI PMC

Kawate T., Gouaux E. (2006). Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681. 10.1016/j.str.2006.01.013 PubMed DOI

Kawate T. (2017). P2X receptor activation. Adv. Exp. Med. Biol. 1051, 55–69. 10.1007/5584_2017_55 PubMed DOI

Korb O., Stützle T., Exner T. E. (2006). Plants: Application of ant colony optimization to structure-based drug design. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma. 4150, 247–258. 10.1007/11839088_22/COVER DOI

Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M. (1993). Procheck: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291. 10.1107/S0021889892009944 DOI

Lovell S. C., Davis I. W., Arendall W. B., de Bakker P. I. W., Word J. M., Prisant M. G., et al. (2003). Structure validation by calpha geometry: Phi, psi and cbeta deviation. Proteins Struct. Funct. Genet. 50, 437–450. 10.1002/prot.10286 PubMed DOI

Mansoor S. E., Lü W., Oosterheert W., Shekhar M., Tajkhorshid E., Gouaux E. (2016). X-ray structures define human P2X 3 receptor gating cycle and antagonist action. Nature 538, 66–71. 10.1038/nature19367 PubMed DOI PMC

McCarthy A. E., Yoshioka C., Mansoor S. E. (2019). Full-length P2X7 structures reveal how palmitoylation prevents channel desensitization. Cell 179, 659–670. e13. 10.1016/j.cell.2019.09.017 PubMed DOI PMC

Müller C. E., Namasivayam V. (2022). Agonists, antagonists, and modulators of P2X7 receptors. Methods Mol. Biol. 2510, 31–52. 10.1007/978-1-0716-2384-8_2 PubMed DOI

Pasqualetto G., Brancale A., Young M. T. (2018). The molecular determinants of small-molecule ligand binding at P2X receptors. Front. Pharmacol. 9, 58. 10.3389/fphar.2018.00058 PubMed DOI PMC

Rarey M., Kramer B., Lengauer T., Klebe G. (1996). A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489. 10.1006/jmbi.1996.0477 PubMed DOI

Ren W. J., Illes P. (2022). Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal 18, 83–92. 10.1007/s11302-021-09796-5 PubMed DOI PMC

Sheng D., Hattori M. (2022). Recent progress in the structural biology of P2X receptors. Proteins Struct. Funct. Bioinforma. 90, 1779–1785. 10.1002/prot.26302 PubMed DOI

Specs (2022). Specs - compound management services and research compounds for the Life science industry. Available at: https://www.specs.net/index.php [Accessed August 1, 2022].

Tsuda M., Shigemoto-Mogami Y., Koizumi S., Mizokoshi A., Kohsaka S., Salter M. W., et al. (2003). P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783. 10.1038/nature01786 PubMed DOI

Villoutreix B. O., Laconde G., Lagorce D., Martineau P., Miteva M. A., Dariavach P. (2011). Tyrosine kinase syk non-enzymatic inhibitors and potential anti-allergic drug-like compounds discovered by virtual and in vitro screening. PLoS One 6, e21117. 10.1371/journal.pone.0021117 PubMed DOI PMC

Young M. T., Fisher J. A., Fountain S. J., Ford R. C., North R. A., Khakh B. S. (2008). Molecular shape, architecture, and size of P2X4 receptors determined using fluorescence resonance energy transfer and electron microscopy. J. Biol. Chem. 283, 26241–26251. 10.1074/jbc.M804458200 PubMed DOI PMC

Young M. T., Pelegrin P., Surprenant A. (2007). Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol. Pharmacol. 71, 92–100. 10.1124/mol.106.030163 PubMed DOI

Zhao Y., Chen X., Lyu S., Ding Z., Wu Y., Gao Y., et al. (2021). Identification of novel P2X7R antagonists by using structure-based virtual screening and cell-based assays. Chem. Biol. Drug Des. 98, 192–205. 10.1111/cbdd.13867 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...