Generation of intense magnetic wakes by relativistic laser pulses in plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16 019/0000789
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16 019/0000789
European Regional Development Fund
SVV-2022-260590
Univerzita Karlova v Praze
PubMed
36717699
PubMed Central
PMC9886990
DOI
10.1038/s41598-023-28753-3
PII: 10.1038/s41598-023-28753-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The emergence of petawatt lasers focused to relativistic intensities enables all-optical laboratory generation of intense magnetic fields in plasmas, which are of great interest due to their ubiquity in astrophysical phenomena. In this work, we study generation of spatially extended and long-lived intense magnetic fields. We show that such magnetic fields, scaling up to the gigagauss range, can be generated by interaction of petawatt laser pulses with relativistically underdense plasma. With three-dimensional particle-in-cell simulations we investigate generation of magnetic fields with strengths up to [Formula: see text] G and perform a large multi-parametric study of magnetic field in dependence on dimensionless laser amplitude [Formula: see text] and normalized plasma density [Formula: see text]. The numerical results yield scaling laws that closely follow derived analytical result [Formula: see text], and further show a close match with previous experimental works. Furthermore, we show in three-dimensional geometry that the decay of the magnetic wake is governed by current filament bending instability, which develops similarly to von Kármán vortex street in its nonlinear stage.
Zobrazit více v PubMed
Haines M. Generation of an axial magnetic field from photon spin. Phys. Rev. Lett. 2001;87(13):135005. PubMed
Ali S, Davies J, Mendonca J. Inverse faraday effect with linearly polarized laser pulses. Phys. Rev. Lett. 2010;105(3):035001. PubMed
Nuter R, Korneev P, Dmitriev E, Thiele I, Tikhonchuk V. Gain of electron orbital angular momentum in a direct laser acceleration process. Phys. Rev. E. 2020;101(5):053202. PubMed
Najmudin Z, Tatarakis M, Pukhov A, Clark E, Clarke R, Dangor A, Faure J, Malka V, Neely D, Santala M, et al. Measurements of the inverse faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett. 2001;87(21):215004. PubMed
Sheng Z, Meyer-ter-Vehn J. Inverse faraday effect and propagation of circularly polarized intense laser beams in plasmas. Phys. Rev. E. 1996;54(2):1833. PubMed
Berezhiani V, Mahajan S, Shatashvili N. Theory of magnetic field generation by relativistically strong laser radiation. Phys. Rev. E. 1997;55(1):995.
Lehner T. Intense magnetic field generation by relativistic ponderomotive force in an underdense plasma. Phys. Scr. 1994;49(6):704.
Herlach F, Miura N. High Magnetic Fields. Techniques and Experiments. Singapore: World Scientific; 2003.
Strozzi D, Tabak M, Larson D, Divol L, Kemp A, Bellei C, Marinak M, Key M. Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields. Phys. Plasmas. 2012;19(7):072711.
Sagdeev R. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 1966;4:23.
Kuznetsov A, Esirkepov TZ, Kamenets F, Bulanov S. Efficiency of ion acceleration by a relativistically strong laser pulse in an underdense plasma. Plasma Phys. Rep. 2001;27(3):211–220.
Fukuda Y, Faenov AY, Tampo M, Pikuz T, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, et al. Energy increase in multi-mev ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 2009;103(16):165002. PubMed
Nakamura T, Bulanov SV, Esirkepov TZ, Kando M. High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 2010;105(13):135002. PubMed
Bulanov S, Esarey E, Schroeder C, Leemans W, Bulanov S, Margarone D, Korn G, Haberer T. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy. Phys. Rev. Spec. Top. Accel. Beams. 2015;18(6):061302.
Park J, Bulanov SS, Bin J, Ji Q, Steinke S, Vay J-L, Geddes CG, Schroeder CB, Leemans WP, Schenkel T, et al. Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas. 2019;26(10):103108.
Kopp R, Pneuman G. Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 1976;50(1):85–98.
Masuda S, Kosugi T, Hara H, Tsuneta S, Ogawara Y. A loop-top hard x-ray source in a compact solar flare as evidence for magnetic reconnection. Nature. 1994;371(6497):495–497.
Kuramitsu Y, Moritaka T, Sakawa Y, Morita T, Sano T, Koenig M, Gregory C, Woolsey N, Tomita K, Takabe H, et al. Magnetic reconnection driven by electron dynamics. Nat. Commun. 2018;9(1):1–6. PubMed PMC
Gu, Y.-J., Bulanov, S.V.: Magnetic field annihilation and charged particle acceleration in ultra-relativistic laser plasmas. High Power Laser Sci. Eng. 9 (2021)
Lai D. Matter in strong magnetic fields. Rev. Mod. Phys. 2001;73:629–662.
Vanlandingham KM, Schmidt GD, Eisenstein DJ, Harris HC, Anderson SF, Hall PB, Liebert J, Schneider DP, Silvestri NM, Stinson GS, Wolfe MA. Magnetic white dwarfs from the SDSS. II. the second and third data releases. Astron. J. 2005;130(2):734–741.
Duncan, R.C.: Physics in ultra-strong magnetic fields. In: AIP Conference Proceedings, vol. 526, pp. 830–841 (2000). American Institute of Physics
Erber T. High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys. 1966;38(4):626.
Schwinger J, Tsai W-Y, Erber T. Classical and quantum theory of synergic synchrotron-čerenkov radiation. Ann. Phys. 1976;96(2):303–332.
Mourou GA, Tajima T, Bulanov SV. Optics in the relativistic regime. Rev. Mod. Phys. 2006;78(2):309.
Bulanov S, Esirkepov TZ, Kando M, Koga J, Kondo K, Korn G. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers. Plasma Phys. Rep. 2015;41(1):1–51.
Gradov O, Stenflo L. Magnetic-field generation by a finite-radius electromagnetic beam. Phys. Lett. A. 1983;95(5):233–234.
Gorbunov L, Mora P, Antonsen T., Jr Magnetic field of a plasma wake driven by a laser pulse. Phys. Rev. Lett. 1996;76(14):2495. PubMed
Sheng Z, Meyer-ter-Vehn J, Pukhov A. Analytic and numerical study of magnetic fields in the plasma wake of an intense laser pulse. Phys. Plasmas. 1998;5(10):3764–3773.
Nuter R, Korneev P, Thiele I, Tikhonchuk V. Plasma solenoid driven by a laser beam carrying an orbital angular momentum. Phys. Rev. E. 2018;98(3):033211.
Wilson T, Sheng Z, Eliasson B, McKenna P. Magnetic field amplification by high power lasers in underdense plasma. Plasma Phys. Controlled Fusion. 2021;63(8):084001.
Horovitz Y, Eliezer S, Ludmirsky A, Henis Z, Moshe E, Shpitalnik R, Arad B. Measurements of inverse faraday effect and absorption of circularly polarized laser light in plasmas. Phys. Rev. Lett. 1997;78(9):1707.
Horovitz Y, Eliezer S, Henis Z, Paiss Y, Moshe E, Ludmirsky A, Werdiger M, Arad B, Zigler A. The inverse faraday effect in plasma produced by circularly polarized laser light in the range of intensities 109–1014 w/cm2. Phys. Lett. A. 1998;246(3–4):329–334.
Deschamps J, Fitaire M, Lagoutte M. Inverse faraday effect in a plasma. Phys. Rev. Lett. 1970;25(19):1330.
Tatarakis M, Watts I, Beg F, Clark E, Dangor A, Gopal A, Haines M, Norreys P, Wagner U, Wei M-S, et al. Measuring huge magnetic fields. Nature. 2002;415(6869):280–280. PubMed
Liseykina T, Popruzhenko S, Macchi A. Inverse faraday effect driven by radiation friction. New J. Phys. 2016;18(7):072001.
Jiang K, Pukhov A, Zhou C. Magnetic field amplification to gigagauss scale via hydrodynamic flows and dynamos driven by femtosecond lasers. New J. Phys. 2021;23(6):063054.
Murakami M, Honrubia J, Weichman K, Arefiev A, Bulanov S. Generation of megatesla magnetic fields by intense-laser-driven microtube implosions. Sci. Rep. 2020;10(1):1–11. PubMed PMC
Harilal, S., Phillips, M., Froula, D., Anoop, K., Issac, R., Beg, F.: Optical diagnostics of laser-produced plasmas. arXiv preprint arXiv:2201.08783 (2022)
Bulanov S, Lontano M, Esirkepov TZ, Pegoraro F, Pukhov A. Electron vortices produced by ultraintense laser pulses. Phys. Rev. Lett. 1996;76(19):3562. PubMed
Bulanov S, Esirkepov TZ, Lontano M, Pegoraro F. The stability of single and double vortex films in the framework of the hasegawa-mima equation. Plasma Phys. Rep. 1997;23(8):660–669.
Kostyukov I, Pukhov A, Kiselev S. Phenomenological theory of laser-plasma interaction in “bubble” regime. Phys. Plasmas. 2004;11(11):5256–5264.
Lu W, Tzoufras M, Joshi C, Tsung F, Mori W, Vieira J, Fonseca R, Silva L. Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3d nonlinear regime. Phys. Rev. Spec. Topics Accel. Beams. 2007;10(6):061301.
Mourou G, Chang Z, Maksimchuk A, Nees J, Bulanov S, Bychenkov VY, Esirkepov TZ, Naumova NM, Pegoraro F, Ruhl H. On the design of experiments for the study of relativistic nonlinear optics in the limit of single-cycle pulse duration and single-wavelength spot size. Plasma Phys. Rep. 2002;28(1):12–27.
Qiao B, He X, Zhu Sp. Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction. Phys. Plasmas. 2006;13(5):053106.
Fiúza F, Fonseca R, Tonge J, Mori WB, Silva L. Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers. Phys. Rev. Lett. 2012;108(23):235004. PubMed
Askar’yan G, Bulanov S, Pegoraro F, Pukhov A. Magnetic interaction of self-focusing channels and fluxes of electromagnetic radiation: their coalescence, the accumulation of energy, and the effect of external magnetic fields on them. Soviet J. Exp. Theor. Phys. Lett. 1994;60:251.
Lamb H. Hydrodynamics, 585/587. Press: Cambridge Univ; 1975.
Ruyer C, Fiuza F. Disruption of current filaments and isotropization of the magnetic field in counterstreaming plasmas. Phys. Rev. Lett. 2018;120(24):245002. PubMed
Ridgers CP, Kirk JG, Duclous R, Blackburn T, Brady C, Bennett K, Arber T, Bell A. Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions. J. Comput. Phys. 2014;260:273–285.
Gonsalves A, Nakamura K, Daniels J, Benedetti C, Pieronek C, De Raadt T, Steinke S, Bin J, Bulanov S, Van Tilborg J, et al. Petawatt laser guiding and electron beam acceleration to 8 gev in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122(8):084801. PubMed
Andersen KK, Esberg J, Knudsen H, Thomsen H, Uggerhøj U, Sona P, Mangiarotti A, Ketel T, Dizdar A, Ballestrero S. Experimental investigations of synchrotron radiation at the onset of the quantum regime. Phys. Rev. D. 2012;86(7):072001.
Ritus V. Radiative corrections in quantum electrodynamics with intense field and their analytical properties. Ann. Phys. 1972;69(2):555–582.
Narozhny N. Expansion parameter of perturbation theory in intense-field quantum electrodynamics. Phys. Rev. D. 1980;21(4):1176.
Di Piazza A, Wistisen T, Tamburini M, Uggerhøj U. Testing strong field qed close to the fully nonperturbative regime using aligned crystals. Phys. Rev. Lett. 2020;124(4):044801. PubMed
Arber T, Bennett K, Brady C, Lawrence-Douglas A, Ramsay M, Sircombe N, Gillies P, Evans R, Schmitz H, Bell A, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion. 2015;57(11):113001.