• This record comes from PubMed

A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling

. 2023 Mar ; 4 (3) : 344-364. [epub] 20230202

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
773208 European Research Council - International
14257 Cancer Research UK - United Kingdom
771486 European Research Council - International
29800 Cancer Research UK - United Kingdom
FC001112 Cancer Research UK - United Kingdom

Links

PubMed 36732635
PubMed Central PMC7615234
DOI 10.1038/s43018-023-00513-2
PII: 10.1038/s43018-023-00513-2
Knihovny.cz E-resources

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.

Cancer Research UK Beatson Institute Glasgow UK

Department of Analytical Chemistry Faculty of Chemical Technology University of Pardubice Pardubice Czech Republic

Department of Gastroenterology Affiliated Hospital of Jiangsu University Jiangsu University Zhenjiang China

Department of Human Molecular Genetics and Biochemistry Faculty of Medicine Tel Aviv University Tel Aviv Israel

Department of Imaging and Pathology Laboratory of Translational Cell and Tissue Research KU Leuven Leuven Belgium

Department of Oncology KU Leuven Leuven Belgium

Department of Pathology University Hospitals Leuven KU Leuven Leuven Belgium

Division of Translational Pediatric Sarcoma Research German Cancer Research Center Heidelberg Germany

Hopp Children's Cancer Center Heidelberg Germany

Institute of Pathology Heidelberg University Hospital Heidelberg Germany

Laboratory for Angiogenesis and Vascular Metabolism VIB KU Leuven Leuven Belgium

Laboratory for Molecular Biology of Leukemia VIB KU Leuven Leuven Belgium

Laboratory for Molecular Cancer Biology VIB Center for Cancer Biology Leuven Belgium

Laboratory for Translational Breast Cancer Research Department of Oncology KU Leuven Leuven Belgium

Laboratory of Cellular Metabolism and Metabolic Regulation Department of Oncology KU Leuven and Leuven Cancer Institute Leuven Belgium

Laboratory of Cellular Metabolism and Metabolic Regulation VIB KU Leuven Center for Cancer Biology Leuven Belgium

Laboratory of Experimental Oncology Department of Oncology KU Leuven Leuven Belgium

Laboratory of Lipid Metabolism and Cancer Department of Oncology KU Leuven Leuven Belgium

Laboratory of Translational Genetics Department of Human Genetics KU Leuven Leuven Belgium

Laboratory of Translational Genetics VIB Center for Cancer Biology Leuven Belgium

Laboratory of Tumor Inflammation and Angiogenesis Center for Cancer Biology Department of Oncology KU Leuven Leuven Belgium

Laboratory of Tumor Inflammation and Angiogenesis VIB Center for Cancer Biology Leuven Belgium

School of Cancer Sciences University of Glasgow Glasgow UK

SciLifeLab Department of Microbiology Tumor and Cell Biology Karolinska Institute Solna Sweden

The Francis Crick Institute London UK

Université Paris Cité NF kappaB Différenciation et Cancer Paris France

Comment In

PubMed

See more in PubMed

Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nature reviews Cancer. 2021;21:162–180. doi: 10.1038/s41568-020-00320-2. PubMed DOI PMC

Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell metabolism. 2022;34:1675–1699. doi: 10.1016/j.cmet.2022.09.023. PubMed DOI

Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021;56:1363–1393. doi: 10.1016/j.devcel.2021.04.013. PubMed DOI

Altea-Manzano P, Cuadros AM, Broadfield LA, Fendt SM. Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take. EMBO Rep. 2020;21:e50635. doi: 10.15252/embr.202050635. PubMed DOI PMC

Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer. 2017;17:302–317. doi: 10.1038/nrc.2017.6. PubMed DOI

Doglioni G, Parik S, Fendt SM. Interactions in the (Pre)metastatic Niche Support Metastasis Formation. Front Oncol. 2019;9:219. doi: 10.3389/fonc.2019.00219. PubMed DOI PMC

Fong MY, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–194. doi: 10.1038/ncb3094. PubMed DOI PMC

Christen S, et al. Breast cancer-derived lung metastasis show increased pyruvate carboxylase-dependent anaplerosis. Cell Reports. 2016;17:837–848. PubMed

Rinaldi G, et al. In Vivo Evidence for Serine Biosynthesis-Defined Sensitivity of Lung Metastasis, but Not of Primary Breast Tumors, to mTORC1 Inhibition. Molecular Cell. 2021;81:386–397. doi: 10.1016/j.molcel.2020.11.027. PubMed DOI PMC

Heppner G, Miller F, Malathy Shekhar PV. Nontransgenic models of breast cancer. Breast cancer research : BCR. 2000;2:331–334. doi: 10.1186/bcr77. PubMed DOI PMC

Lee E, Pandey NB, Popel AS. Pre-treatment of mice with tumor-conditioned media accelerates metastasis to lymph nodes and lungs: a new spontaneous breast cancer metastasis model. Clinical & experimental metastasis. 2014;31:67–79. doi: 10.1007/s10585-013-9610-9. PubMed DOI PMC

Erler JT, et al. Hypoxia-Induced Lysyl Oxidase Is a Critical Mediator of Bone Marrow Cell Recruitment to Form the Premetastatic Niche. Cancer cell. 2009;15:35–44. doi: 10.1016/j.ccr.2008.11.012. PubMed DOI PMC

Sceneay J, et al. Primary Tumor Hypoxia Recruits CD11b+/Ly6Cmed/Ly6G+ Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche. Cancer research. 2012;72:3906. doi: 10.1158/0008-5472.CAN-11-3873. PubMed DOI

Peinado H, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine. 2012;18:883–891. doi: 10.1038/nm.2753. PubMed DOI PMC

Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids in Health and Disease. 2020;19:122. doi: 10.1186/s12944-020-01278-8. PubMed DOI PMC

Ombrato L, et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature. 2019;572:603–608. doi: 10.1038/s41586-019-1487-6. PubMed DOI PMC

Hegab AE, et al. High fat diet activates adult mouse lung stem cells and accelerates several aging-induced effects. Stem Cell Res. 2018;33:25–35. doi: 10.1016/j.scr.2018.10.006. PubMed DOI

Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis. 2020;19:122. doi: 10.1186/s12944-020-01278-8. PubMed DOI PMC

Elia I, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature communications. 2017;8:15267 PubMed PMC

Elia I, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019;568:117–121. doi: 10.1038/s41586-019-0977-x. PubMed DOI PMC

Lien EC, et al. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature. 2021;599:302–307. doi: 10.1038/s41586-021-04049-2. PubMed DOI PMC

Vivas-García Y, et al. Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity. Mol Cell. 2020;77:120–137.:e129. doi: 10.1016/j.molcel.2019.10.014. PubMed DOI PMC

Broadfield LA, et al. Fat Induces Glucose Metabolism in Nontransformed Liver Cells and Promotes Liver Tumorigenesis. Cancer research. 2021;81:1988–2001. doi: 10.1158/0008-5472.Can-20-1954. PubMed DOI PMC

Ciriello G, et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015;163:506–519. doi: 10.1016/j.cell.2015.09.033. PubMed DOI PMC

Curtis C, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–352. doi: 10.1038/nature10983. PubMed DOI PMC

Kalucka J, et al. Quiescent Endothelial Cells Upregulate Fatty Acid ß-Oxidation for Vasculoprotection via Redox Homeostasis. Cell metabolism. 2018;28:881–894.:e813. doi: 10.1016/j.cmet.2018.07.016. PubMed DOI

Campbell SL, Wellen KE. Metabolic Signaling to the Nucleus in Cancer. Molecular Cell. 2018;71:398–408. doi: 10.1016/j.molcel.2018.07.015. PubMed DOI

Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Reviews Molecular Cell Biology. 2014;15:536–550. doi: 10.1038/nrm3841. PubMed DOI

Krämer A, Green J, Pollard J, Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics (Oxford, England) 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC

Huber MA, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. The Journal of clinical investigation. 2004;114:569–581. doi: 10.1172/jci21358. PubMed DOI PMC

Pino AM, Rodríguez JP. Is fatty acid composition of human bone marrow significant to bone health? Bone. 2019;118:53–61. doi: 10.1016/j.bone.2017.12.014. PubMed DOI

Ferraro GB, et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nature Cancer. 2021;2:414–428. doi: 10.1038/s43018-021-00183-y. PubMed DOI PMC

Parik S, et al. GBM tumors are heterogeneous in their fatty acid metabolism and modulating fatty acid metabolism sensitizes cancer cells derived from recurring GBM tumors to temozolomide. Frontiers in Oncology. 2022;12 doi: 10.3389/fonc.2022.988872. PubMed DOI PMC

Calao M, Burny A, Quivy V, Dekoninck A, Van Lint C. A pervasive role of histone acetyltransferases and deacetylases in an NF-κB-signaling code. Trends in biochemical sciences. 2008;33:339–349. doi: 10.1016/j.tibs.2008.04.015. PubMed DOI

Qin JD, et al. Effect of ammonium pyrrolidine dithiocarbamate (PDTC) on NF-κB activation and CYP2E1 content of rats with immunological liver injury. Pharm Biol. 2014;52:1460–1466. doi: 10.3109/13880209.2014.898075. PubMed DOI

Haque ME, et al. The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021;135:231–257. doi: 10.1042/cs20200986. PubMed DOI

Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology (1) Biochem Cell Biol. 2019;97:30–45. doi: 10.1139/bcb-2017-0297. PubMed DOI

Stilling RM, et al. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. The EMBO journal. 2014;33:1912–1927. doi: 10.15252/embj.201487870. PubMed DOI PMC

Chimenti F, et al. A Novel Histone Acetyltransferase Inhibitor Modulating Gcn5 Network: Cyclopentylidene-[4-(4’-chlorophenyl)thiazol-2-yl)hydrazone. Journal of Medicinal Chemistry. 2009;52:530–536. doi: 10.1021/jm800885d. PubMed DOI

Pascual G, et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature. 2022 doi: 10.1038/s41586-021-04075-0. PubMed DOI

Cacicedo JM, Yagihashi N, Keaney JF, Jr, Ruderman NB, Ido Y. AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2004;324:1204–1209. doi: 10.1016/j.bbrc.2004.09.177. PubMed DOI

Ajuwon KM, Spurlock ME. Palmitate activates the NF-kappaB transcription factor and induces IL-6 and TNFalpha expression in 3T3-L1 adipocytes. J Nutr. 2005;135:1841–1846. doi: 10.1093/jn/135.8.1841. PubMed DOI

Laine PS, et al. Palmitic acid induces IP-10 expression in human macrophages via NF-kappaB activation. Biochem Biophys Res Commun. 2007;358:150–155. doi: 10.1016/j.bbrc.2007.04.092. PubMed DOI

Maloney E, et al. Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol. 2009;29:1370–1375. doi: 10.1161/atvbaha.109.188813. PubMed DOI PMC

Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nature reviews Cancer. 2011;11:886–895. doi: 10.1038/nrc3174. PubMed DOI

Wang X, et al. Epigenetic Silencing of miR-33b Promotes Peritoneal Metastases of Ovarian Cancer by Modulating the TAK1/FASN/CPT1A/NF-κB Axis. Cancers (Basel) 2021;13:4795. PubMed PMC

Rios Garcia M, et al. Acetyl-CoA Carboxylase 1-Dependent Protein Acetylation Controls Breast Cancer Metastasis and Recurrence. Cell metabolism. 2017;26:842–855.:e845. doi: 10.1016/j.cmet.2017.09.018. PubMed DOI

Loo SY, et al. Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Sci Adv. 2021;7:eabh2443. doi: 10.1126/sciadv.abh2443. PubMed DOI PMC

McDonnell E, et al. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation. Cell Rep. 2016;17:1463–1472. doi: 10.1016/j.celrep.2016.10.012. PubMed DOI PMC

Lu M, et al. ACOT12-Dependent Alteration of Acetyl-CoA Drives Hepatocellular Carcinoma Metastasis by Epigenetic Induction of Epithelial-Mesenchymal Transition. Cell metabolism. 2019;29:886–900.:e885. doi: 10.1016/j.cmet.2018.12.019. PubMed DOI

Chen Q, et al. Acetyl-CoA derived from hepatic mitochondrial fatty acid P—oxidation aggravates inflammation by enhancing p65 acetylation. iScience. 2021;24:103244. doi: 10.1016/j.isci.2021.103244. PubMed DOI PMC

Mao X, et al. GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA. Genes & development. 2009;23:849–861. doi: 10.1101/gad.1748409. PubMed DOI PMC

Xiong Y, et al. CPT1A regulates breast cancer-associated lymphangiogenesis via VEGF signaling. Biomedicine & Pharmacotherapy. 2018;106:1–7. doi: 10.1016/j.biopha.2018.05.112. PubMed DOI

Jariwala N, et al. CPT1A and fatty acid β-oxidation are essential for tumor cell growth and survival in hormone receptor-positive breast cancer. NAR Cancer. 2021;3:zcab035. doi: 10.1093/narcan/zcab035. PubMed DOI PMC

Pucci S, et al. Carnitine palmitoyl transferase-1A (CPT1A): a new tumor specific target in human breast cancer. Oncotarget. 2016;7:19982–19996. doi: 10.18632/oncotarget.6964. PubMed DOI PMC

Park Jun H, et al. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. Cell Reports. 2016;14:2154–2165. doi: 10.1016/j.celrep.2016.02.004. PubMed DOI PMC

Wang YN, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018;37:6025–6040. doi: 10.1038/s41388-018-0384-z. PubMed DOI

Sawyer BT, et al. Targeting Fatty Acid Oxidation to Promote Anoikis and Inhibit Ovarian Cancer Progression. Molecular Cancer Research. 2020;18:1088. doi: 10.1158/1541-7786.MCR-19-1057. PubMed DOI PMC

Lee C-k, et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science. 2019;363:644. doi: 10.1126/science.aav0173. PubMed DOI

Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Seminars in cancer biology. 2020;60:274–284. doi: 10.1016/j.semcancer.2019.09.001. PubMed DOI

von Lintig FC, et al. Ras activation in human breast cancer. Breast Cancer Res Treat. 2000;62:51–62. doi: 10.1023/a:1006491619920. PubMed DOI

Hoenerhoff MJ, et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene. 2009;28:3022–3032. doi: 10.1038/onc.2009.165. PubMed DOI PMC

Lock R, Kenific CM, Leidal AM, Salas E, Debnath J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer discovery. 2014;4:466–479. doi: 10.1158/2159-8290.CD-13-0841. PubMed DOI PMC

Leamy AK, et al. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells [S] Journal of Lipid Research. 2014;55:1478–1488. doi: 10.1194/jlr.M050237. PubMed DOI PMC

Chimenti F, et al. A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4’-chlorophenyl)thiazol-2-yl)hydrazone. J Med Chem. 2009;52:530–536. doi: 10.1021/jm800885d. PubMed DOI

Czerkies M, et al. Cell fate in antiviral response arises in the crosstalk of IRF, NF-κB and JAK/STAT pathways. Nature communications. 2018;9:493. doi: 10.1038/s41467-017-02640-8. PubMed DOI PMC

Jacque E, Tchenio T, Piton G, Romeo P-H, Baud V. RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:14635–14640. doi: 10.1073/pnas.0507342102. PubMed DOI PMC

Eluard B, et al. The alternative RelB NF-kB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood. 2021 doi: 10.1182/blood.2020010039. PubMed DOI

van Gorsel M, Elia I, Fendt S-M. 13C tracer analysis and metabolomics in 3D cultured cancer cells. Methods in Molecular Biology. 2019:1862. PubMed

Lorendeau D, et al. Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metabolic engineering. 2016 doi: 10.1016/j.ymben.2016.11.005. PubMed DOI

Vriens K, et al. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature. 2019;566:403–406. doi: 10.1038/s41586-019-0904-1. PubMed DOI PMC

Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H. Correction of 13C Mass Isotopomer Distributions for Natural Stable Isotope Abundance. Journal of Mass Spectrometry. 1996;31:255–262. doi: 10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3. PubMed DOI

Buescher JM, et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Current Opinion in Biotechnology. 2015;34:189–201. PubMed PMC

Karch KR, Sidoli S, Garcia BA. Identification and Quantification of Histone PTMs Using High-Resolution Mass Spectrometry. Methods Enzymol. 2016;574:3–29. doi: 10.1016/bs.mie.2015.12.007. PubMed DOI PMC

Rappsilber J, Ishihama Y, Mann M. Stop and Go Extraction Tips for Matrix-Assisted Laser Desorption/Ionization, Nanoelectrospray, and LC/MS Sample Pretreatment in Proteomics. Analytical Chemistry. 2003;75:663–670. doi: 10.1021/ac026117i. PubMed DOI

Sinha M, Lowell CA. Isolation of Highly Pure Primary Mouse Alveolar Epithelial Type II Cells by Flow Cytometric Cell Sorting. Bio Protoc. 2016;6:e2013. doi: 10.21769/BioProtoc.2013. PubMed DOI PMC

Major J, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science. 2020;369:712–717. doi: 10.1126/science.abc2061. PubMed DOI PMC

Barkauskas CE, et al. Type 2 alveolar cells are stem cells in adult lung. The Journal of clinical investigation. 2013;123:3025–3036. doi: 10.1172/JCI68782. PubMed DOI PMC

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology. 2018;36:411–420. doi: 10.1038/nbt.4096. PubMed DOI PMC

Cao J, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566:496–502. doi: 10.1038/s41586-019-0969-x. PubMed DOI PMC

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment. 2008;2008:P10008

Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics. 2013;14:7. doi: 10.1186/1471-2105-14-7. PubMed DOI PMC

Kim D, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Hruz T, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC

Xu J, et al. 14-3-3Z turns TGF-βs function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer cell. 2015;27:177–192. doi: 10.1016/j.ccell.2014.11.025. PubMed DOI PMC

Liberzon A, et al. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Systems. 2015;1:417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC

Gui J, et al. Activation of p38a stress-activated protein kinase drives the formation of the pre-metastatic niche in the lungs. Nature Cancer. 2020;1:603–619. doi: 10.1038/s43018-020-0064-0. PubMed DOI PMC

Liu Y, et al. Tumor Exosomal RNAs Promote Lung Pre-metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit Neutrophils. Cancer cell. 2016;30:243–256. doi: 10.1016/j.ccell.2016.06.021. PubMed DOI

Hiratsuka S, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology. 2008;10:1349–1355. doi: 10.1038/ncb1794. PubMed DOI

Morrissey SM, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell metabolism. 2021;33:2040–2058.:e2010. doi: 10.1016/j.cmet.2021.09.002. PubMed DOI PMC

Hoshino A, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–335. doi: 10.1038/nature15756. PubMed DOI PMC

Geiger T, et al. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nature protocols. 2011;6:147–157. doi: 10.1038/nprot.2010.192. PubMed DOI

Broux M, et al. Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia. Blood. 2019;134:1323–1336. doi: 10.1182/blood.2019000015. PubMed DOI PMC

Ubellacker JM, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 2020;585:113–118. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...