A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
773208
European Research Council - International
14257
Cancer Research UK - United Kingdom
771486
European Research Council - International
29800
Cancer Research UK - United Kingdom
FC001112
Cancer Research UK - United Kingdom
PubMed
36732635
PubMed Central
PMC7615234
DOI
10.1038/s43018-023-00513-2
PII: 10.1038/s43018-023-00513-2
Knihovny.cz E-resources
- MeSH
- Acetylation MeSH
- Acetyl Coenzyme A metabolism MeSH
- Carnitine O-Palmitoyltransferase metabolism MeSH
- Lysine Acetyltransferases * metabolism MeSH
- Mice MeSH
- NF-kappa B * metabolism MeSH
- Palmitates MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acetyl Coenzyme A MeSH
- Carnitine O-Palmitoyltransferase MeSH
- Lysine Acetyltransferases * MeSH
- NF-kappa B * MeSH
- Palmitates MeSH
Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.
Cancer Research UK Beatson Institute Glasgow UK
Department of Oncology KU Leuven Leuven Belgium
Department of Pathology University Hospitals Leuven KU Leuven Leuven Belgium
Hopp Children's Cancer Center Heidelberg Germany
Institute of Pathology Heidelberg University Hospital Heidelberg Germany
Laboratory for Angiogenesis and Vascular Metabolism VIB KU Leuven Leuven Belgium
Laboratory for Molecular Biology of Leukemia VIB KU Leuven Leuven Belgium
Laboratory for Molecular Cancer Biology VIB Center for Cancer Biology Leuven Belgium
Laboratory for Translational Breast Cancer Research Department of Oncology KU Leuven Leuven Belgium
Laboratory of Experimental Oncology Department of Oncology KU Leuven Leuven Belgium
Laboratory of Lipid Metabolism and Cancer Department of Oncology KU Leuven Leuven Belgium
Laboratory of Translational Genetics Department of Human Genetics KU Leuven Leuven Belgium
Laboratory of Translational Genetics VIB Center for Cancer Biology Leuven Belgium
Laboratory of Tumor Inflammation and Angiogenesis VIB Center for Cancer Biology Leuven Belgium
School of Cancer Sciences University of Glasgow Glasgow UK
SciLifeLab Department of Microbiology Tumor and Cell Biology Karolinska Institute Solna Sweden
The Francis Crick Institute London UK
Université Paris Cité NF kappaB Différenciation et Cancer Paris France
See more in PubMed
Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nature reviews Cancer. 2021;21:162–180. doi: 10.1038/s41568-020-00320-2. PubMed DOI PMC
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell metabolism. 2022;34:1675–1699. doi: 10.1016/j.cmet.2022.09.023. PubMed DOI
Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021;56:1363–1393. doi: 10.1016/j.devcel.2021.04.013. PubMed DOI
Altea-Manzano P, Cuadros AM, Broadfield LA, Fendt SM. Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take. EMBO Rep. 2020;21:e50635. doi: 10.15252/embr.202050635. PubMed DOI PMC
Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer. 2017;17:302–317. doi: 10.1038/nrc.2017.6. PubMed DOI
Doglioni G, Parik S, Fendt SM. Interactions in the (Pre)metastatic Niche Support Metastasis Formation. Front Oncol. 2019;9:219. doi: 10.3389/fonc.2019.00219. PubMed DOI PMC
Fong MY, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–194. doi: 10.1038/ncb3094. PubMed DOI PMC
Christen S, et al. Breast cancer-derived lung metastasis show increased pyruvate carboxylase-dependent anaplerosis. Cell Reports. 2016;17:837–848. PubMed
Rinaldi G, et al. In Vivo Evidence for Serine Biosynthesis-Defined Sensitivity of Lung Metastasis, but Not of Primary Breast Tumors, to mTORC1 Inhibition. Molecular Cell. 2021;81:386–397. doi: 10.1016/j.molcel.2020.11.027. PubMed DOI PMC
Heppner G, Miller F, Malathy Shekhar PV. Nontransgenic models of breast cancer. Breast cancer research : BCR. 2000;2:331–334. doi: 10.1186/bcr77. PubMed DOI PMC
Lee E, Pandey NB, Popel AS. Pre-treatment of mice with tumor-conditioned media accelerates metastasis to lymph nodes and lungs: a new spontaneous breast cancer metastasis model. Clinical & experimental metastasis. 2014;31:67–79. doi: 10.1007/s10585-013-9610-9. PubMed DOI PMC
Erler JT, et al. Hypoxia-Induced Lysyl Oxidase Is a Critical Mediator of Bone Marrow Cell Recruitment to Form the Premetastatic Niche. Cancer cell. 2009;15:35–44. doi: 10.1016/j.ccr.2008.11.012. PubMed DOI PMC
Sceneay J, et al. Primary Tumor Hypoxia Recruits CD11b+/Ly6Cmed/Ly6G+ Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche. Cancer research. 2012;72:3906. doi: 10.1158/0008-5472.CAN-11-3873. PubMed DOI
Peinado H, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine. 2012;18:883–891. doi: 10.1038/nm.2753. PubMed DOI PMC
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids in Health and Disease. 2020;19:122. doi: 10.1186/s12944-020-01278-8. PubMed DOI PMC
Ombrato L, et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature. 2019;572:603–608. doi: 10.1038/s41586-019-1487-6. PubMed DOI PMC
Hegab AE, et al. High fat diet activates adult mouse lung stem cells and accelerates several aging-induced effects. Stem Cell Res. 2018;33:25–35. doi: 10.1016/j.scr.2018.10.006. PubMed DOI
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis. 2020;19:122. doi: 10.1186/s12944-020-01278-8. PubMed DOI PMC
Elia I, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature communications. 2017;8:15267 PubMed PMC
Elia I, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019;568:117–121. doi: 10.1038/s41586-019-0977-x. PubMed DOI PMC
Lien EC, et al. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature. 2021;599:302–307. doi: 10.1038/s41586-021-04049-2. PubMed DOI PMC
Vivas-García Y, et al. Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity. Mol Cell. 2020;77:120–137.:e129. doi: 10.1016/j.molcel.2019.10.014. PubMed DOI PMC
Broadfield LA, et al. Fat Induces Glucose Metabolism in Nontransformed Liver Cells and Promotes Liver Tumorigenesis. Cancer research. 2021;81:1988–2001. doi: 10.1158/0008-5472.Can-20-1954. PubMed DOI PMC
Ciriello G, et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015;163:506–519. doi: 10.1016/j.cell.2015.09.033. PubMed DOI PMC
Curtis C, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–352. doi: 10.1038/nature10983. PubMed DOI PMC
Kalucka J, et al. Quiescent Endothelial Cells Upregulate Fatty Acid ß-Oxidation for Vasculoprotection via Redox Homeostasis. Cell metabolism. 2018;28:881–894.:e813. doi: 10.1016/j.cmet.2018.07.016. PubMed DOI
Campbell SL, Wellen KE. Metabolic Signaling to the Nucleus in Cancer. Molecular Cell. 2018;71:398–408. doi: 10.1016/j.molcel.2018.07.015. PubMed DOI
Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Reviews Molecular Cell Biology. 2014;15:536–550. doi: 10.1038/nrm3841. PubMed DOI
Krämer A, Green J, Pollard J, Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics (Oxford, England) 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC
Huber MA, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. The Journal of clinical investigation. 2004;114:569–581. doi: 10.1172/jci21358. PubMed DOI PMC
Pino AM, Rodríguez JP. Is fatty acid composition of human bone marrow significant to bone health? Bone. 2019;118:53–61. doi: 10.1016/j.bone.2017.12.014. PubMed DOI
Ferraro GB, et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nature Cancer. 2021;2:414–428. doi: 10.1038/s43018-021-00183-y. PubMed DOI PMC
Parik S, et al. GBM tumors are heterogeneous in their fatty acid metabolism and modulating fatty acid metabolism sensitizes cancer cells derived from recurring GBM tumors to temozolomide. Frontiers in Oncology. 2022;12 doi: 10.3389/fonc.2022.988872. PubMed DOI PMC
Calao M, Burny A, Quivy V, Dekoninck A, Van Lint C. A pervasive role of histone acetyltransferases and deacetylases in an NF-κB-signaling code. Trends in biochemical sciences. 2008;33:339–349. doi: 10.1016/j.tibs.2008.04.015. PubMed DOI
Qin JD, et al. Effect of ammonium pyrrolidine dithiocarbamate (PDTC) on NF-κB activation and CYP2E1 content of rats with immunological liver injury. Pharm Biol. 2014;52:1460–1466. doi: 10.3109/13880209.2014.898075. PubMed DOI
Haque ME, et al. The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021;135:231–257. doi: 10.1042/cs20200986. PubMed DOI
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology (1) Biochem Cell Biol. 2019;97:30–45. doi: 10.1139/bcb-2017-0297. PubMed DOI
Stilling RM, et al. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. The EMBO journal. 2014;33:1912–1927. doi: 10.15252/embj.201487870. PubMed DOI PMC
Chimenti F, et al. A Novel Histone Acetyltransferase Inhibitor Modulating Gcn5 Network: Cyclopentylidene-[4-(4’-chlorophenyl)thiazol-2-yl)hydrazone. Journal of Medicinal Chemistry. 2009;52:530–536. doi: 10.1021/jm800885d. PubMed DOI
Pascual G, et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature. 2022 doi: 10.1038/s41586-021-04075-0. PubMed DOI
Cacicedo JM, Yagihashi N, Keaney JF, Jr, Ruderman NB, Ido Y. AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2004;324:1204–1209. doi: 10.1016/j.bbrc.2004.09.177. PubMed DOI
Ajuwon KM, Spurlock ME. Palmitate activates the NF-kappaB transcription factor and induces IL-6 and TNFalpha expression in 3T3-L1 adipocytes. J Nutr. 2005;135:1841–1846. doi: 10.1093/jn/135.8.1841. PubMed DOI
Laine PS, et al. Palmitic acid induces IP-10 expression in human macrophages via NF-kappaB activation. Biochem Biophys Res Commun. 2007;358:150–155. doi: 10.1016/j.bbrc.2007.04.092. PubMed DOI
Maloney E, et al. Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol. 2009;29:1370–1375. doi: 10.1161/atvbaha.109.188813. PubMed DOI PMC
Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nature reviews Cancer. 2011;11:886–895. doi: 10.1038/nrc3174. PubMed DOI
Wang X, et al. Epigenetic Silencing of miR-33b Promotes Peritoneal Metastases of Ovarian Cancer by Modulating the TAK1/FASN/CPT1A/NF-κB Axis. Cancers (Basel) 2021;13:4795. PubMed PMC
Rios Garcia M, et al. Acetyl-CoA Carboxylase 1-Dependent Protein Acetylation Controls Breast Cancer Metastasis and Recurrence. Cell metabolism. 2017;26:842–855.:e845. doi: 10.1016/j.cmet.2017.09.018. PubMed DOI
Loo SY, et al. Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Sci Adv. 2021;7:eabh2443. doi: 10.1126/sciadv.abh2443. PubMed DOI PMC
McDonnell E, et al. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation. Cell Rep. 2016;17:1463–1472. doi: 10.1016/j.celrep.2016.10.012. PubMed DOI PMC
Lu M, et al. ACOT12-Dependent Alteration of Acetyl-CoA Drives Hepatocellular Carcinoma Metastasis by Epigenetic Induction of Epithelial-Mesenchymal Transition. Cell metabolism. 2019;29:886–900.:e885. doi: 10.1016/j.cmet.2018.12.019. PubMed DOI
Chen Q, et al. Acetyl-CoA derived from hepatic mitochondrial fatty acid P—oxidation aggravates inflammation by enhancing p65 acetylation. iScience. 2021;24:103244. doi: 10.1016/j.isci.2021.103244. PubMed DOI PMC
Mao X, et al. GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA. Genes & development. 2009;23:849–861. doi: 10.1101/gad.1748409. PubMed DOI PMC
Xiong Y, et al. CPT1A regulates breast cancer-associated lymphangiogenesis via VEGF signaling. Biomedicine & Pharmacotherapy. 2018;106:1–7. doi: 10.1016/j.biopha.2018.05.112. PubMed DOI
Jariwala N, et al. CPT1A and fatty acid β-oxidation are essential for tumor cell growth and survival in hormone receptor-positive breast cancer. NAR Cancer. 2021;3:zcab035. doi: 10.1093/narcan/zcab035. PubMed DOI PMC
Pucci S, et al. Carnitine palmitoyl transferase-1A (CPT1A): a new tumor specific target in human breast cancer. Oncotarget. 2016;7:19982–19996. doi: 10.18632/oncotarget.6964. PubMed DOI PMC
Park Jun H, et al. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. Cell Reports. 2016;14:2154–2165. doi: 10.1016/j.celrep.2016.02.004. PubMed DOI PMC
Wang YN, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018;37:6025–6040. doi: 10.1038/s41388-018-0384-z. PubMed DOI
Sawyer BT, et al. Targeting Fatty Acid Oxidation to Promote Anoikis and Inhibit Ovarian Cancer Progression. Molecular Cancer Research. 2020;18:1088. doi: 10.1158/1541-7786.MCR-19-1057. PubMed DOI PMC
Lee C-k, et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science. 2019;363:644. doi: 10.1126/science.aav0173. PubMed DOI
Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Seminars in cancer biology. 2020;60:274–284. doi: 10.1016/j.semcancer.2019.09.001. PubMed DOI
von Lintig FC, et al. Ras activation in human breast cancer. Breast Cancer Res Treat. 2000;62:51–62. doi: 10.1023/a:1006491619920. PubMed DOI
Hoenerhoff MJ, et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene. 2009;28:3022–3032. doi: 10.1038/onc.2009.165. PubMed DOI PMC
Lock R, Kenific CM, Leidal AM, Salas E, Debnath J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer discovery. 2014;4:466–479. doi: 10.1158/2159-8290.CD-13-0841. PubMed DOI PMC
Leamy AK, et al. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells [S] Journal of Lipid Research. 2014;55:1478–1488. doi: 10.1194/jlr.M050237. PubMed DOI PMC
Chimenti F, et al. A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4’-chlorophenyl)thiazol-2-yl)hydrazone. J Med Chem. 2009;52:530–536. doi: 10.1021/jm800885d. PubMed DOI
Czerkies M, et al. Cell fate in antiviral response arises in the crosstalk of IRF, NF-κB and JAK/STAT pathways. Nature communications. 2018;9:493. doi: 10.1038/s41467-017-02640-8. PubMed DOI PMC
Jacque E, Tchenio T, Piton G, Romeo P-H, Baud V. RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:14635–14640. doi: 10.1073/pnas.0507342102. PubMed DOI PMC
Eluard B, et al. The alternative RelB NF-kB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood. 2021 doi: 10.1182/blood.2020010039. PubMed DOI
van Gorsel M, Elia I, Fendt S-M. 13C tracer analysis and metabolomics in 3D cultured cancer cells. Methods in Molecular Biology. 2019:1862. PubMed
Lorendeau D, et al. Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metabolic engineering. 2016 doi: 10.1016/j.ymben.2016.11.005. PubMed DOI
Vriens K, et al. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature. 2019;566:403–406. doi: 10.1038/s41586-019-0904-1. PubMed DOI PMC
Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H. Correction of 13C Mass Isotopomer Distributions for Natural Stable Isotope Abundance. Journal of Mass Spectrometry. 1996;31:255–262. doi: 10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3. PubMed DOI
Buescher JM, et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Current Opinion in Biotechnology. 2015;34:189–201. PubMed PMC
Karch KR, Sidoli S, Garcia BA. Identification and Quantification of Histone PTMs Using High-Resolution Mass Spectrometry. Methods Enzymol. 2016;574:3–29. doi: 10.1016/bs.mie.2015.12.007. PubMed DOI PMC
Rappsilber J, Ishihama Y, Mann M. Stop and Go Extraction Tips for Matrix-Assisted Laser Desorption/Ionization, Nanoelectrospray, and LC/MS Sample Pretreatment in Proteomics. Analytical Chemistry. 2003;75:663–670. doi: 10.1021/ac026117i. PubMed DOI
Sinha M, Lowell CA. Isolation of Highly Pure Primary Mouse Alveolar Epithelial Type II Cells by Flow Cytometric Cell Sorting. Bio Protoc. 2016;6:e2013. doi: 10.21769/BioProtoc.2013. PubMed DOI PMC
Major J, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science. 2020;369:712–717. doi: 10.1126/science.abc2061. PubMed DOI PMC
Barkauskas CE, et al. Type 2 alveolar cells are stem cells in adult lung. The Journal of clinical investigation. 2013;123:3025–3036. doi: 10.1172/JCI68782. PubMed DOI PMC
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology. 2018;36:411–420. doi: 10.1038/nbt.4096. PubMed DOI PMC
Cao J, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566:496–502. doi: 10.1038/s41586-019-0969-x. PubMed DOI PMC
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment. 2008;2008:P10008
Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics. 2013;14:7. doi: 10.1186/1471-2105-14-7. PubMed DOI PMC
Kim D, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Hruz T, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC
Xu J, et al. 14-3-3Z turns TGF-βs function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer cell. 2015;27:177–192. doi: 10.1016/j.ccell.2014.11.025. PubMed DOI PMC
Liberzon A, et al. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Systems. 2015;1:417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC
Gui J, et al. Activation of p38a stress-activated protein kinase drives the formation of the pre-metastatic niche in the lungs. Nature Cancer. 2020;1:603–619. doi: 10.1038/s43018-020-0064-0. PubMed DOI PMC
Liu Y, et al. Tumor Exosomal RNAs Promote Lung Pre-metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit Neutrophils. Cancer cell. 2016;30:243–256. doi: 10.1016/j.ccell.2016.06.021. PubMed DOI
Hiratsuka S, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology. 2008;10:1349–1355. doi: 10.1038/ncb1794. PubMed DOI
Morrissey SM, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell metabolism. 2021;33:2040–2058.:e2010. doi: 10.1016/j.cmet.2021.09.002. PubMed DOI PMC
Hoshino A, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–335. doi: 10.1038/nature15756. PubMed DOI PMC
Geiger T, et al. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nature protocols. 2011;6:147–157. doi: 10.1038/nprot.2010.192. PubMed DOI
Broux M, et al. Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia. Blood. 2019;134:1323–1336. doi: 10.1182/blood.2019000015. PubMed DOI PMC
Ubellacker JM, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 2020;585:113–118. PubMed PMC