Plasma FIB milling for the determination of structures in situ
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36746945
PubMed Central
PMC9902539
DOI
10.1038/s41467-023-36372-9
PII: 10.1038/s41467-023-36372-9
Knihovny.cz E-zdroje
- MeSH
- elektrony * MeSH
- karmustin MeSH
- lidé MeSH
- mikroskopie * MeSH
- průběh práce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- karmustin MeSH
Structural biology studies inside cells and tissues require methods to thin vitrified specimens to electron transparency. Until now, focused ion beams based on gallium have been used. However, ion implantation, changes to surface chemistry and an inability to access high currents limit gallium application. Here, we show that plasma-coupled ion sources can produce cryogenic lamellae of vitrified human cells in a robust and automated manner, with quality sufficient for pseudo-atomic structure determination. Lamellae were produced in a prototype microscope equipped for long cryogenic run times (> 1 week) and with multi-specimen support fully compatible with modern-day transmission electron microscopes. We demonstrate that plasma ion sources can be used for structural biology within cells, determining a structure in situ to 4.9 Å, and characterise the resolution dependence on particle distance from the lamella edge. We describe a workflow upon which different plasmas can be examined to further streamline lamella fabrication.
Zobrazit více v PubMed
Melngailis J. Focused ion beam technology and applications. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1987;5:469.
Orloff J. High‐resolution focused ion beams. Rev. Sci. Instrum. 1993;64:1105–1130.
Rigort A, et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl Acad. Sci. USA. 2012;109:4449–4454. PubMed PMC
Marko M, Hsieh C, Schalek R, Frank J, Mannella C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods. 2007;4:215–217. PubMed
Engel BD, et al. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. Elife. 2015;4:1–29. PubMed PMC
Weiss GL, Kieninger A-K, Maldener I, Forchhammer K, Pilhofer M. Structure and function of a bacterial gap junction analog. Cell. 2019;178:374–384.e15. PubMed PMC
Mahamid J, et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science. 2016;351:969–972. PubMed
Wang Z, et al. Structures from intact myofibrils reveal mechanism of thin filament regulation through nebulin. Science. 2022;375:1612–1627. PubMed
Sutton G, et al. Assembly intermediates of orthoreovirus captured in the cell. Nat. Commun. 2020;11:4445. PubMed PMC
Gorelick, S. et al. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. Elife8, e45919 (2019). PubMed PMC
Tacke S, et al. A streamlined workflow for automated cryo focused ion beam milling. J. Struct. Biol. 2021;213:107743. PubMed
Zachs T, et al. Fully automated, sequential focused ion beam milling for cryo-electron tomography. Elife. 2020;9:1–14. PubMed PMC
Schaffer M, et al. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol. 2017;197:73–82. PubMed
Klumpe S, et al. A modular platform for automated cryo-FIB workflows. Elife. 2021;10:1–29. PubMed PMC
Buckley G, et al. Automated cryo-lamella preparation for high-throughput in-situ structural biology. J. Struct. Biol. 2020;210:107488. PubMed
Introduction to Focused Ion Beams. Introduction to Focused Ion Beams (Springer US, 2005).
Forbest RG. Understanding how the liquid-metal ion source works. Vacuum. 1997;48:85–97.
Giannuzzi LA, Stevie FA. A review of focused ion beam milling techniques for TEM specimen preparation. Micron. 1999;30:197–204.
Volkert CA, Minor AM. Focused ion beam microscopy and micromachining. MRS Bull. 2007;32:389–399.
Mayer J, Giannuzzi LA, Kamino T, Michael J. TEM sample preparation and FIB-induced damage. MRS Bull. 2007;32:400–407.
Sergey, G. et al. Oxygen plasma focused ion beam scanning electron microscopy for biological samples. bioRxiv10.1101/457820 (2018).
Smith NS, et al. High brightness inductively coupled plasma source for high current focused ion beam applications. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2006;24:2902.
Bassim N, Scott K, Giannuzzi LA. Recent advances in focused ion beam technology and applications. MRS Bull. 2014;39:317–325.
Brogden V, et al. Material sputtering with a multi-ion species plasma focused ion beam. Adv. Mater. Sci. Eng. 2021;2021:1–9.
Fu J, Joshi SB, Catchmark JM. Sputtering rate of micromilling on water ice with focused ion beam in a cryogenic environment. J. Vac. Sci. Technol. A Vac., Surf., Film. 2008;26:422–429.
Marko M, Hsieh C, Moberlychan W, Mannella CA, Frank J. Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J. Microsc. 2006;222:42–47. PubMed
Wagner FR, et al. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 2020;15:2041–2070. PubMed PMC
Dumoux, M. et al. Cryo-plasma FIB/SEM volume imaging of biological specimens. bioRxiv. 2022.09.21.508877 (2022).
Allegretti M, et al. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature. 2020;586:796–800. PubMed
Schuller AP, et al. The cellular environment shapes the nuclear pore complex architecture. Nature. 2021;598:667–671. PubMed PMC
Grange M, Vasishtan D, Grünewald K. Cellular electron cryo tomography and in situ sub-volume averaging reveal the context of microtubule-based processes. J. Struct. Biol. 2017;197:181–190. PubMed PMC
Woodward CL, Mendonça LM, Jensen GJ. Direct visualization of vaults within intact cells by electron cryo-tomography. Cell. Mol. Life Sci. 2015;72:3401–3409. PubMed PMC
Kovtun, O. et al. Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature10.1038/s41586-018-0526-z (2018). PubMed PMC
Burnett TL, et al. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy. 2016;161:119–129. PubMed
Liu J, et al. Effect of ion irradiation introduced by focused ion-beam milling on the mechanical behaviour of sub-micron-sized samples. Sci. Rep. 2020;10:10324. PubMed PMC
Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat. Methods. 2021;18:186–193. PubMed PMC
Rosenthal PB, Henderson R. Optimal determination of particle orientation, asolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 2003;333:721–745. PubMed
Sigmund P. Theory of sputtering. I. sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 1969;184:383–416.
Frey L, Lehrer C, Ryssel H. Nanoscale effects in focused ion beam processing. Appl. Phys. A Mater. Sci. Process. 2003;76:1017–1023.
Berger C, et al. Structure of the Yersinia injectisome in intracellular host cell phagosomes revealed by cryo FIB electron tomography. J. Struct. Biol. 2021;213:107701. PubMed
Rice WJ, et al. Routine determination of ice thickness for cryo-EM grids. J. Struct. Biol. 2018;204:38–44. PubMed PMC
Yesibolati MN, et al. Electron inelastic mean free path in water. Nanoscale. 2020;12:20649–20657. PubMed
Khavnekar, S. et al. Optimizing Cryo-FIB lamellas for sub-5Å in situ structural biology. bioRxiv10.1101/2022.06.16.496417 (2022).
Engel L, et al. Extracellular matrix micropatterning technology for whole cell cryogenic electron microscopy studies. J. Micromech. Microeng. 2019;29:115018. PubMed PMC
Toro-Nahuelpan M, et al. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat. Methods. 2020;17:50–54. PubMed PMC
Dumoux M, Clare DK, Saibil HR, Hayward RD. Chlamydiae assemble a pathogen synapse to Hijack the host endoplasmic reticulum. Traffic. 2012;13:1612–1627. PubMed PMC
Tegunov D, Cramer P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods. 2019;16:1146–1152. PubMed PMC
Zheng S, et al. AreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X. 2022;6:100068. PubMed PMC
Mastronarde DN, Held SR. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 2017;197:102–113. PubMed PMC
Chen M, et al. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat. Methods. 2019;16:1161–1168. PubMed PMC
Wagner T, et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019;2:218. PubMed PMC
Bharat TAM, Scheres SHW. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protoc. 2016;11:2054–2065. PubMed PMC
Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Structure of the human 80S ribosome. Nature. 2015;520:640–645. PubMed
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
Pillar data-acquisition strategies for cryo-electron tomography of beam-sensitive biological samples