A conserved SNP variation in the pre-miR396c flanking region in Oryza sativa indica landraces correlates with mature miRNA abundance

. 2023 Feb 07 ; 13 (1) : 2195. [epub] 20230207

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36750679
Odkazy

PubMed 36750679
PubMed Central PMC9905475
DOI 10.1038/s41598-023-28836-1
PII: 10.1038/s41598-023-28836-1
Knihovny.cz E-zdroje

Plant precursor miRNAs (pre-miRNA) have conserved evolutionary footprints that correlate with mode of miRNA biogenesis. In plants, base to loop and loop to base modes of biogenesis have been reported. Conserved structural element(s) in pre-miRNA play a major role in turn over and abundance of mature miRNA. Pre-miR396c sequences and secondary structural characteristics across Oryza species are presented. Based on secondary structure, twelve Oryza pre-miR396c sequences are divided into three groups, with the precursor from halophytic Oryza coarctata forming a distinct group. The miRNA-miRNA* duplex region is completely conserved across eleven Oryza species as are other structural elements in the pre-miRNA, suggestive of an evolutionarily conserved base-to-loop mode of miRNA biogenesis. SNPs within O. coarctata mature miR396c sequence and miRNA* region have the potential to alter target specificity and association with the RNA-induced silencing complex. A conserved SNP variation, rs10234287911 (G/A), identified in O. sativa pre-miR396c sequences alters base pairing above the miRNA-miRNA* duplex. The more stable structure conferred by the 'A10234287911' allele may promote better processing vis-à-vis the structure conferred by 'G10234287911' allele. We also examine pri- and pre-miR396c expression in cultivated rice under heat and salinity and their correlation with miR396c expression.

Zobrazit více v PubMed

Zhang SX, Liu YH, Yu B. New insights into pri-miRNA processing and accumulation in plants. WIREs RNA. 2015;6:533–545. doi: 10.1002/wrna.1292. PubMed DOI

Yu Y, Jia T, Chen X. The ‘how’ and ‘where’ of plant microRNAs. New Phytol. 2017;216:1002–1017. doi: 10.1111/nph.14834. PubMed DOI PMC

Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF. Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res. 2013;23:1675–1689. PubMed PMC

Chorostecki U, Moro B, Rojas AML, Debernardi JM, Schapire AL, Notredame C, Palatnik JF. Evolutionary footprints reveal insights into plant microRNA biogenesis. Plant Cell. 2017;29:1248–1261. PubMed PMC

Sun G, Stewart CN, Jr, Xiao P, Zhang B. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS ONE. 2012;7:e32017. PubMed PMC

Gupta B, Sengupta A, Saha J, Gupta B. The attributes of RNA interference in relation to plant abiotic stress tolerance. Gene Technol. 2014;3:1.

Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14(836):843. PubMed PMC

Sanchez PL, Wing RA, Brar DS. The wild relative of rice: Genomes and genomics. Genet. Genom. Rice. 2013 doi: 10.1007/978-1-4614-7903-1_2. DOI

Awala SK, Nanhapo I, Sakagami J-I, Kanyomeka L, Iijima M. Differential salinity Tolerance among Oryza glaberrima, Oryza sativa and their interspecies including NERICA. Plant Prod. Sci. 2015;13:3–10.

Menguer PK, Sperotto RA, Ricachenevsky FK. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance. Genet. Mol. Biol. 2017;40:238–252. PubMed PMC

Prusty MR, Kim SR, Vinarao R, Entila F, Egdane J, Diaz MGQ, Jena KK. Newly identified wild rice accessions conferring high salt tolerance might use a tissue tolerance mechanism in leaf. Front. Plant Sci. 2018;9:417. PubMed PMC

Singh AK, Furtado A, Brozynska M, Mishra NS, Henry RJ. Phylogeny and molecular evolution of miR820 and miR396 microRNA families in Oryza AA genomes. Trop. Plant Biol. 2017;11:1–16.

Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y. Over-expression of osa-MiR396c decreases salt and alkali stress tolerance. Planta. 2010;231:991–1001. PubMed

Mangrauthia SK, Agarwal S, Sailaja B, Madhav MS, Voleti SR. MicroRNAs and Their Role in Salt Stress Response in Plants. In: Ahmad P, Azooz MM, Prasad MNV, editors. Salt Stress in Plants. New York: Springer; 2013.

Li S, Gao F, Xie K, Zeng X, Cao Y, Zeng J, He Z, Ren Y, Li W, Deng Q, Wang S, Zheng A, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol. J. 2016;14:2134–2146. PubMed PMC

Mondal TK, Panda AK, Rawal HC, Sharma TR. Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress. Sci. Rep. 2018;8:1–11. PubMed PMC

Stein JC, Yu Y, Copetti D, et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 2018;50:285–296. PubMed

Wang W, et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature. 2018;557:43–49. PubMed PMC

Singh A, Singh B, Panda K, Rai VP, Singh AK, Singh SP, Chouhan SK, Rai V, Singh PK, Singh NK. Wild rices of Eastern Indo-Gangetic plains of India constitute two sub-populations harbouring rich genetic diversity. Plant Omics. 2013;6:121–127.

Wing RA, Kim HR, Goicoexhea JL, Yu Y, Kudrna D, Zuccolo A, et al. The Oryza Map Alignment Project (OMAP): a new resource for comparative genome studies within Oryza. In: Upadhyaya NM, et al., editors. Rice functional genomics: challenges, progress and prospects. New York: Springer; 2007.

Mondal TK, Rawal HC, Chowrasia S, Varshney D, et al. Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci. Rep. 2018;8(1):1–13. PubMed PMC

Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. PubMed PMC

Krzywinski M, Schein J, Birol I, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. PubMed PMC

Jayabalan S, Pulipati S, Ramasamy R, Jaganathan D, et al. Analysis of genetic diversity and population structure using SSR markers and validation of a cleavage amplified polymorphic sequences (CAPS) marker involving the sodium transporter OsHKT1;5 in saline tolerant rice (Oryza sativa L.) landraces. Gene. 2019;713:143976. PubMed

Swetha C, Basu D, Pachamuthu K, Tirumalai V, Nair A, Prasad M, Shivaprasad PV. Major domestication-related phenotypes in Indica rice are due to loss of miRNA-mediated laccase silencing. Plant Cell. 2018;30(11):2649–2662. PubMed PMC

Zhu H, Zhou Y, Castillo-González C, Lu A, et al. Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat. Struct. Mol. Biol. 2013;20:1106–1115. PubMed PMC

Moro M, Chorostecki UM, Arikit S, et al. Efficiency and precision of miRNA biogenesis modes in plants. BioRxiv. 2018 doi: 10.1101/388330. PubMed DOI PMC

Michlewski G, Guil S, Semple CA, Caceres JF. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell. 2008;32:383–393. PubMed PMC

Castilla-Llorente V, Nicastro G, Ramos A. Terminal loop-mediated regulation of miRNA biogenesis: Selectivity and mechanisms. BiochemSoc. Trans. 2013;41:861–865. PubMed PMC

Meaux JD, Hu JY, Tartler U, Goebel U. Structurally different alleles of the ath-MIR824 microRNA precursor are maintained at high frequency in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 2008;105:8994–8999. PubMed PMC

Cuperus JT, Montgomery TA, Fahlgren N, Burke RT, Townsend T, Sullivan CM, Carrington JC. Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc. Natl. Acad Sci. USA. 2010;107:466–471. PubMed PMC

Mondal TK, Ganie SA, Debnath AB. Identification of novel and conserved miRNAs from extreme halophyte, Oryza coarctata, a wild relative of rice. PLoS ONE. 2015;10:e0140675. PubMed PMC

Chandran V, Wang H, Gao F, Cao XL, Chen YP, et al. miR396-OsGRFs module balances growth and rice blast disease-resistance. Front. Plant Sci. 2019;9:1999. PubMed PMC

Zhang J, Zhou Z, Bai J, Tao X, Wang L, Zhang H, Zhu JK. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. Natl. Sci. Rev. 2020;7(1):102–112. PubMed PMC

Song FJ, Chen KX. Single-nucleotide polymorphisms among microRNA: big effects on cancer. Chin. J. Cancer. 2011;30:381–391. PubMed PMC

Mateos JL, Bologna NG, Chorostecki U, Palatnik JF. Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr. Biol. 2010;20:49–54. PubMed

Wang SH, et al. SNP in pre-miR-1666 decreases mature miRNA expression and is associated with chicken performance. Genome. 2015;58:81–90. PubMed

Zhang B. MicroRNA: a new target for improving plant tolerance to abiotic stress. J. Exp. Bot. 2015;66:1749–1761. PubMed PMC

Wang J, Mei J, Ren G. Plant microRNAs: Biogenesis, homeostasis, and degradation. Front. Plant Sci. 2019;10:360. PubMed PMC

Siddika T, Heinemann IU. Bringing MicroRNAs to light: Methods for MicroRNA quantification and visualization in live cells. Front. Bioeng. Biotechnol. 2021;8:619583. PubMed PMC

Dalmadi Á, Gyula P, Bálint J, Szittya G, Havelda Z. AGO-unbound cytosolic pool of mature miRNAs in plant cells reveals a novel regulatory step at AGO1 loading. Nucleic Acids Res. 2019;47(18):9803–9817. PubMed PMC

Ehrenreich IM, Purugganan MD. Sequence variation of MicroRNAs and their binding sites in Arabidopsis. Plant Physiol. 2008;146:1974–1982. PubMed PMC

Dalmadi Á, Miloro F, Bálint J, Várallyay É, Havelda Z. Controlled RISC loading efficiency of miR168 defined by miRNA duplex structure adjusts ARGONAUTE1 homeostasis. Nucleic Acids Res. 2021;49(22):12912–12928. PubMed PMC

Yuan S, Zhao J, Li Z, Hu Q, et al. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Hortic. Res. 2019;6(1):1–13. PubMed PMC

Yuan S, Li Z, Yuan N, Hu Q, Zhou M, Zhao J, Li D, Luo H. MiR396 is involved in plant response to vernalization and flower development in Agrostis stolonifera. Hortic. Res. 2020;7(1):1–14. PubMed PMC

Baisden JT, Boyer JA, Zhao B, et al. Visualizing a protonated RNA state that modulates microRNA-21 maturation. Nat. Chem. Biol. 2021;17:80–88. PubMed

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids. Res. 2006;34:40–144. PubMed PMC

Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–15.

Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 2011;7:539. PubMed PMC

Li JY, Wang J, Zeigler RS. vThe 3000 rice genomes project: New opportunities and challenges for future rice research. GigaSci. 2014;3:8. PubMed PMC

Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 2005;33:299–302. PubMed PMC

Gregorio, G, B., Senadhira, D., Mendoza, R, D. Screening Rice for Salinity Tolerance. IRRI Discussion Paper Series No.22:1–30. International Rice Research Institute, Los Baños (1997).

Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr. Protoc. Mol. Biol. 2011;95:15. PubMed PMC

Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C. Real-time PCR quantification of precursor and mature microRNA. Methods. 2008;44(1):31–33. PubMed PMC

Yang LH, Wang SL, Tang LL, Liu B, Ye WL, Wang ZY, Wang LL, Zhou MT. Universal stem-loop primer method for screening and quantification of microRNA. PLoS ONE. 2014;9:e115293. PubMed PMC

Chowrasia S, Kaur H, Mujib A, Mondal TK. Evaluation of Oryza coarctata candidate reference genes under different abiotic stresses. Biol. Plant. 2019;63:496–503.

Shivaprasad PV, Dunn RM, Santos BACM, Bassett A, Baulcombe DC. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 2012;31:257–266. PubMed PMC

Tirumalai V, Prasad M, Shivaprasad PV. RNA blot analysis for the detection and quantification of plant microRNAs. J. Vis. Exp. 2020 doi: 10.3791/61394. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...