• This record comes from PubMed

Johann Gregor Mendel: the victory of statistics over human imagination

. 2023 Jul ; 31 (7) : 744-748. [epub] 20230209

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Review, Research Support, Non-U.S. Gov't

Grant support
MUNI/A/1370/2022 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Links

PubMed 36755104
PubMed Central PMC9909140
DOI 10.1038/s41431-023-01303-1
PII: 10.1038/s41431-023-01303-1
Knihovny.cz E-resources

In 2022, we celebrated 200 years since the birth of Johann Gregor Mendel. Although his contributions to science went unrecognized during his lifetime, Mendel not only described the principles of monogenic inheritance but also pioneered the modern way of doing science based on precise experimental data acquisition and evaluation. Novel statistical and algorithmic approaches are now at the center of scientific work, showing that work that is considered marginal in one era can become a mainstream research approach in the next era. The onset of data-driven science caused a shift from hypothesis-testing to hypothesis-generating approaches in science. Mendel is remembered here as a promoter of this approach, and the benefits of big data and statistical approaches are discussed.

See more in PubMed

Kampourakis K. Mendel and the Path to Genetics: Portraying Science as a Social Process. Sci Educ. 2013;22:293–324. doi: 10.1007/s11191-010-9323-2. DOI

Abbott S, Fairbanks DJ. Experiments on Plant Hybrids by Gregor Mendel. Genetics. 2016;204:407–22. doi: 10.1534/genetics.116.195198. PubMed DOI PMC

Gasking EB. Why was Mendel’s Work Ignored? J Hist Ideas. 1959;20:60–84. doi: 10.2307/2707967. DOI

Mukherjee S. The Gene: An Intimate History. New York: Large Print Press [in English]; 2017.

Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, et al. International network of cancer genome projects. Nature. 2010;464:993–8. doi: 10.1038/nature08987. PubMed DOI PMC

Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, Stein LD, et al. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93. doi: 10.1038/s41586-020-1969-6. PubMed DOI PMC

Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord J-P, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol. 2019;38:1–10. doi: 10.1200/JCO.19.02105. PubMed DOI PMC

Gerstung M, Papaemmanuil E, Martincorena I, Bullinger L, Gaidzik VI, Paschka P, et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet. 2017;49:332–40. doi: 10.1038/ng.3756. PubMed DOI PMC

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:53. doi: 10.1186/s40537-021-00444-8. PubMed DOI PMC

Sakellaropoulos T, Vougas K, Narang S, Koinis F, Kotsinas A, Polyzos A, et al. A Deep Learning Framework for Predicting Response to Therapy in Cancer. Cell Rep. 2019;29:3367–3373.e3364. doi: 10.1016/j.celrep.2019.11.017. PubMed DOI

Yuan Y, Bar-Joseph Z. Deep learning for inferring gene relationships from single-cell expression data. Proc Natl Acad Sci. 2019;116:27151–8. doi: 10.1073/pnas.1911536116. PubMed DOI PMC

Savage N. Breaking into the black box of artificial intelligence. Nature. 2022. 10.1038/d41586-022-00858-1. PubMed

Zaritsky A, Jamieson AR, Welf ES, Nevarez A, Cillay J, Eskiocak U, et al. Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma. Cell Syst. 2021;12:733–747.e736. doi: 10.1016/j.cels.2021.05.003. PubMed DOI PMC

Ray M, Sable MN, Sarkar S, Hallur V. Essential interpretations of bioinformatics in COVID-19 pandemic. Meta Gene. 2021;27:100844–100844. doi: 10.1016/j.mgene.2020.100844. PubMed DOI PMC

Blassel L, Zhukova A, Villabona-Arenas CJ, Atkins KE, Hué S, Gascuel O. Drug resistance mutations in HIV: new bioinformatics approaches and challenges. Curr Opin Virol. 2021;51:56–64. doi: 10.1016/j.coviro.2021.09.009. PubMed DOI

Xu L, Ru X, Song R. Application of Machine Learning for Drug–Target Interaction Prediction. Front Genet. 2021;12:680117. doi: 10.3389/fgene.2021.680117. PubMed DOI PMC

Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–4. doi: 10.1038/s41586-018-0317-6. PubMed DOI PMC

Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, et al. The evolutionary history of 2,658 cancers. Nature. 2020;578:122–8. doi: 10.1038/s41586-019-1907-7. PubMed DOI PMC

Wu L, Han L, Li Q, Wang G, Zhang H, Li L. Using Interactome Big Data to Crack Genetic Mysteries and Enhance Future Crop Breeding. Mol Plant. 2021;14:77–94. doi: 10.1016/j.molp.2020.12.012. PubMed DOI

Park S, Min S, Choi H-S, Yoon S. deepMiRGene: Deep Neural Network based Precursor microRNA Prediction. ArXiv. 2016; abs/1605.00017.

Lee B, Baek J, Park S, Yoon S. deepTarget: End-to-end Learning Framework for microRNA Target Prediction using Deep Recurrent Neural Networks. 2016:434–42. 10.1145/2975167.2975212.

Chen Y, Li Y, Narayan R, Subramanian A, Xie X. Gene expression inference with deep learning. Bioinformatics. 2016;32:1832–9. doi: 10.1093/bioinformatics/btw074. PubMed DOI PMC

Singh R, Lanchantin J, Robins G, Qi Y. DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics. 2016;32:i639–i648. doi: 10.1093/bioinformatics/btw427. PubMed DOI

Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36:983–7. doi: 10.1038/nbt.4235. PubMed DOI

Hoffman GE, Bendl J, Girdhar K, Schadt EE, Roussos P. Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification. Nucleic Acids Res. 2019;47:10597–611. doi: 10.1093/nar/gkz808. PubMed DOI PMC

Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. 2018;18:24. doi: 10.1186/s12874-018-0482-1. PubMed DOI PMC

Lee C, Zame W, Yoon J, van der Schaar M. DeepHit: A Deep Learning Approach to Survival Analysis With Competing Risks. Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32. 10.1609/aaai.v32i1.11842.

Zhao L, Dong Q, Luo C, Wu Y, Bu D, Qi X, et al. DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis. Comput Struct Biotechnol J. 2021;19:2719–25. doi: 10.1016/j.csbj.2021.04.067. PubMed DOI PMC

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big Data: Astronomical or Genomical? PLoS Biol. 2015;13:e1002195. doi: 10.1371/journal.pbio.1002195. PubMed DOI PMC

Eraslan G, Avsec Ž, Gagneur J, Theis FJ. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet. 2019;20:389–403. doi: 10.1038/s41576-019-0122-6. PubMed DOI

Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51:12–18. doi: 10.1038/s41588-018-0295-5. PubMed DOI PMC

Grapov D, Fahrmann J, Wanichthanarak K, Khoomrung S. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine. OMICS. 2018;22:630–6. doi: 10.1089/omi.2018.0097. PubMed DOI PMC

Webb S. Deep learning for biology. Nature. 2018;554:555–7. doi: 10.1038/d41586-018-02174-z. PubMed DOI

Koumakis L. Deep learning models in genomics; are we there yet? Comput Struct Biotechnol J. 2020;18:1466–73. doi: 10.1016/j.csbj.2020.06.017. PubMed DOI PMC

Benzon W. GPT-3: Waterloo or Rubicon? Here be Dragons, Version 4.1. 2022.

Radford A, Kim J, Hallacy C, Ramesh A, Goh G, Agarwal S. et al. Learning Transferable Visual Models From Natural Language Supervision. 2021. 10.48550/arXiv.2103.00020.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...