Editorial: Mineral solubilizing microorganisms (MSM) and their applications in nutrient availability, weathering and bioremediation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu úvodníky
PubMed
36760497
PubMed Central
PMC9903063
DOI
10.3389/fmicb.2023.1101426
Knihovny.cz E-zdroje
- Klíčová slova
- bioremediation, mineral-microbe interactions, minerals solubilization, nutrients availability, plant-microbe interactions,
- Publikační typ
- úvodníky MeSH
Department of Soil Science The Islamia University of Bahawalpur Bahawalpur Pakistan
Faculty of Science Institute for Environmental Studies Charles University Prague Prague Czechia
Institute of Molecular Biology and Biotechnology The University of Lahore Lahore Pakistan
Editorial on the Research Topic Mineral solubilizing microorganisms (MSM) and their applications in nutrient availability, weathering and bioremediation PubMed
Zobrazit více v PubMed
Algieri C., Chakraborty S., Candamano S. (2021). A way to membrane-based environmental remediation for heavy metal removal. Environments 8, 52. 10.3390/environments8060052 DOI
Bashan Y., Kamnev A. A., De-Bashan L. E. (2013). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol. Fertil. Soil 49, 465–479. 10.1007/s00374-012-0737-7 DOI
Catroux G., Hartmann A., Revellin C. (2001). Trends in rhizobial inoculant production and use. Plant Soil 230, 21–30. 10.1023/A:1004777115628 DOI
Etesami H. (2018). Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol. Environ. Saf. 147, 175–191. 10.1016/j.ecoenv.2017.08.032 PubMed DOI
Etesami H. (2020). Enhanced phosphorus fertilizer use efficiency with microorganisms, in Nutrient Dynamics for Sustainable Crop Production, ed Menna R. S. (Singapore: Springer; ), 215–245.
Etesami H., Adl S. M. (2020). Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants, in Phyto-Microbiome in Stress Regulation, eds Kumar M., Kumar V., Prasad R. (Singapore: Springer; ), 147–203.
Etesami H., Maheshwari D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 156, 225–246. 10.1016/j.ecoenv.2018.03.013 PubMed DOI
Liu X., Koestler R. J., Warscheid T., Katayama Y., Gu J.-D. (2020). Microbial deterioration and sustainable conservation of stone monuments and buildings. Nat. Sustain. 3, 991–1004. 10.1038/s41893-020-00602-5 DOI
Plassard C., Dell B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiol. 30, 1129–1139. 10.1093/treephys/tpq063 PubMed DOI
Smyth E. M., Mccarthy J., Nevin R., Khan M. R., Dow J. M., O'gara F., et al. . (2011). In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J. Appl. Microbiol. 111, 683–692. 10.1111/j.1365-2672.2011.05079.x PubMed DOI
van Veen J. A., Van Overbeek L. S., Van Elsas J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61, 121–135. 10.1128/mmbr.61.2.121-135.1997 PubMed DOI PMC