Identification of specific carbonic anhydrase inhibitors via in situ click chemistry, phage-display and synthetic peptide libraries: comparison of the methods and structural study
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36760748
PubMed Central
PMC9890587
DOI
10.1039/d2md00330a
PII: d2md00330a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage-display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor-peptide conjugates identified from the phage libraries showed greater than 100-fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitors.
Zobrazit více v PubMed
Carnero A. Clin. Transl. Oncol. 2006;8:482–490. doi: 10.1007/s12094-006-0048-2. PubMed DOI
Brown D. G. Boström J. J. Med. Chem. 2018;61:9442–9468. doi: 10.1021/acs.jmedchem.8b00675. PubMed DOI
Weigelt D. and Dorange I., in Lead Generation, ed. J. Holenz, 2016, pp. 93–132, 10.1002/9783527677047.ch05 DOI
Rideout D. Science. 1986;233:561–563. doi: 10.1126/science.3523757. PubMed DOI
Inglese J. Benkovic S. J. Tetrahedron. 1991;47:2351–2364. doi: 10.1016/S0040-4020(01)81773-7. DOI
Huc I. Lehn J.-M. Proc. Natl. Acad. Sci. U. S. A. 1997;94:2106–2110. doi: 10.1073/pnas.94.6.2106. PubMed DOI PMC
Nguyen R. Huc I. Angew. Chem., Int. Ed. 2001;40:1774–1776. doi: 10.1002/1521-3773(20010504)40:9<1774::AID-ANIE17740>3.0.CO;2-G. PubMed DOI
Jaegle M. Wong E. L. Tauber C. Nawrotzky E. Arkona C. Rademann J. Angew. Chem., Int. Ed. 2017;56:7358–7378. doi: 10.1002/anie.201610372. PubMed DOI PMC
Wichert M. Krall N. Decurtins W. Franzini R. M. Pretto F. Schneider P. Neri D. Scheuermann J. Nat. Chem. 2015;7:241–249. doi: 10.1038/nchem.2158. PubMed DOI
Erlanson D. A. McDowell R. S. O'Brien T. J. Med. Chem. 2004;47:3463–3482. doi: 10.1021/jm040031v. PubMed DOI
Erlanson D. A. Fesik S. W. Hubbard R. E. Jahnke W. Jhoti H. Nat. Rev. Drug Discovery. 2016;15:605–619. doi: 10.1038/nrd.2016.109. PubMed DOI
Unver M. Y. Gierse R. M. Ritchie H. Hirsch A. K. H. J. Med. Chem. 2018;61:9395–9409. doi: 10.1021/acs.jmedchem.8b00266. PubMed DOI
Bosc D. Camberlein V. Gealageas R. Castillo-Aguilera O. Deprez B. Deprez-Poulain R. J. Med. Chem. 2020;63:3817–3833. doi: 10.1021/acs.jmedchem.9b01183. PubMed DOI
Lossouarn A. Renard P. Y. Sabot C. Bioconjugate Chem. 2021;32:63–72. doi: 10.1021/acs.bioconjchem.0c00568. PubMed DOI
Hirose T. Maita N. Gouda H. Koseki J. Yamamoto T. Sugawara A. Nakano H. Hirono S. Shiomi K. Watanabe T. Taniguchi H. Sharpless K. B. Ōmura S. Sunazuka T. Proc. Natl. Acad. Sci. U. S. A. 2013;110:15892–15897. doi: 10.1073/pnas.1315049110. PubMed DOI PMC
Lewis W. G. Green L. G. Grynszpan F. Radić Z. Carlier P. R. Taylor P. Finn M. G. Sharpless K. B. Angew. Chem., Int. Ed. 2002;41:1053–1057. doi: 10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4. PubMed DOI
Mamidyala S. K. Finn M. G. Chem. Soc. Rev. 2010;39:1252–1261. doi: 10.1039/B901969N. PubMed DOI
Willand N. Desroses M. Toto P. Dirié B. Lens Z. Villeret V. Rucktooa P. Locht C. Baulard A. Deprez B. ACS Chem. Biol. 2010;5:1007–1013. doi: 10.1021/cb100177g. PubMed DOI
Bhardwaj A. Kaur J. Wuest M. Wuest F. Nat. Commun. 2017;8:1. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC
Mocharla V. P. Colasson B. Lee L. V. Röper S. Sharpless K. B. Wong C.-H. Kolb H. C. Angew. Chem., Int. Ed. 2005;44:116–120. doi: 10.1002/anie.200461580. PubMed DOI
Ng S. Jafari M. R. Matochko W. L. Derda R. ACS Chem. Biol. 2012;7:1482–1487. doi: 10.1021/cb300187t. PubMed DOI
Ng S. Lin E. Kitov P. I. Tjhung K. F. Gerlits O. O. Deng L. Kasper B. Sood A. Paschal B. M. Zhang P. Ling C.-C. Klassen J. S. Noren C. J. Mahal L. K. Woods R. J. Coates L. Derda R. J. Am. Chem. Soc. 2015;137:5248–5251. doi: 10.1021/ja511237n. PubMed DOI PMC
Tjhung K. F. Kitov P. I. Ng S. Kitova E. N. Deng L. Klassen J. S. Derda R. J. Am. Chem. Soc. 2016;138:32–35. doi: 10.1021/jacs.5b10390. PubMed DOI
Haapasalo J. Nordfors K. Jarvela S. Bragge H. Rantala I. Parkkila A. K. Haapasalo H. Parkkila S. Neuro. Oncol. 2007;9:308–313. doi: 10.1215/15228517-2007-001. PubMed DOI PMC
Supuran C. T. Scozzafava A. Bioorg. Med. Chem. 2007;15:4336–4350. doi: 10.1016/j.bmc.2007.04.020. PubMed DOI
Supuran C. T. Curr. Top. Med. Chem. 2007;7:825–833. doi: 10.2174/156802607780636690. PubMed DOI
Capasso C. and Supuran C. T., in Targeting Carbonic Anhydrases, 2014, pp. 6–16, 10.4155/fseb2013.13.43 DOI
Mishra C. B. Tiwari M. Supuran C. T. Med. Res. Rev. 2020;40:2485–2565. doi: 10.1002/med.21713. PubMed DOI
Jonsson B.-H. Liljas A. Biophys. J. 2020;119:1275–1280. doi: 10.1016/j.bpj.2020.08.020. PubMed DOI PMC
Supuran C. T. Expert Opin. Drug Discovery. 2017;12:61–88. doi: 10.1080/17460441.2017.1253677. PubMed DOI
Supuran C. T. Expert Opin. Drug Discovery. 2020;15:671–686. doi: 10.1080/17460441.2020.1743676. PubMed DOI
Goddard-Borger E. D. Stick R. V. Org. Lett. 2007;9:3797–3800. doi: 10.1021/ol701581g. PubMed DOI
Potter G. T. Jayson G. C. Miller G. J. Gardiner J. M. J. Org. Chem. 2016;81:3443–3446. doi: 10.1021/acs.joc.6b00177. PubMed DOI
Geoghegan K. F. Stroh J. G. Bioconjugate Chem. 1992;3:138–146. doi: 10.1021/bc00014a008. PubMed DOI
Jee J. E. Lim J. Ong Y. S. Oon J. Gao L. Choi H. S. Lee S. S. Org. Biomol. Chem. 2016;14:6833–6839. doi: 10.1039/C6OB01104G. PubMed DOI PMC
Li J. Shi K. Sabet Z. F. Fu W. Zhou H. Xu S. Liu T. You M. Cao M. Xu M. Cui X. Hu B. Liu Y. Chen C. Sci. Adv. 2019;5:eaax0937. doi: 10.1126/sciadv.aax0937. PubMed DOI PMC
Kanfar N. Tanc M. Dumy P. Supuran C. T. Ulrich S. Winum J. Y. Chem. – Eur. J. 2017;23:6788–6794. doi: 10.1002/chem.201700241. PubMed DOI
Furka A. Sebestyen F. Asgedom M. Dibo G. Int. J. Pept. Protein Res. 1991;37:487–493. doi: 10.1111/j.1399-3011.1991.tb00765.x. PubMed DOI
Lam K. S. Salmon S. E. Hersh E. M. Hruby V. J. Kazmierski W. M. Knapp R. J. Nature. 1991;354:82–84. doi: 10.1038/354082a0. PubMed DOI
Houghten R. A. Pinilla C. Blondelle S. E. Appel J. R. Dooley C. T. Cuervo J. H. Nature. 1991;354:84–86. doi: 10.1038/354084a0. PubMed DOI
Khalifah R. G. J. Biol. Chem. 1971;246:2561–2573. doi: 10.1016/S0021-9258(18)62326-9. PubMed DOI
Kugler M. Holub J. Brynda J. Pospíšilová K. Anwar S. E. Bavol D. Havránek M. Král V. Fábry M. Grüner B. Řezáčová P. J. Enzyme Inhib. Med. Chem. 2020;35:1800–1810. doi: 10.1080/14756366.2020.1816996. PubMed DOI PMC
Najm M. A. A. Mahmoud W. R. Taher A. T. Abbas S. E. S. Awadallah F. M. Allam H. A. Vullo D. Supuran C. T. J. Enzyme Inhib. Med. Chem. 2022;37:2702–2709. doi: 10.1080/14756366.2022.2126463. PubMed DOI PMC
Komnatnyy V. V. Nielsen T. E. Qvortrup K. Chem. Commun. 2018;54:6759–6771. doi: 10.1039/C8CC02486C. PubMed DOI
Pei D. Appiah Kubi G. Expert Opin. Drug Discovery. 2019;14:1097–1102. doi: 10.1080/17460441.2019.1647164. PubMed DOI PMC
Krishnamurthy V. M. Kaufman G. K. Urbach A. R. Gitlin I. Gudiksen K. L. Weibel D. B. Whitesides G. M. Chem. Rev. 2008;108:946–1051. doi: 10.1021/cr050262p. PubMed DOI PMC
Cheng X. Veverka V. Radhakrishnan A. Waters L. C. Muskett F. W. Morgan S. H. Huo J. Yu C. Evans E. J. Leslie A. J. Griffiths M. Stubberfield C. Griffin R. Henry A. J. Jansson A. Ladbury J. E. Ikemizu S. Carr M. D. Davis S. J. J. Biol. Chem. 2013;288:11771–11785. doi: 10.1074/jbc.M112.448126. PubMed DOI PMC
Sersen S. Traven K. Kljun J. Turel I. Supuran C. T. J. Enzyme Inhib. Med. Chem. 2019;34:388–393. doi: 10.1080/14756366.2018.1547288. PubMed DOI PMC
Lindskog S. Pharmacol. Ther. 1997;74:1–20. doi: 10.1016/S0163-7258(96)00198-2. PubMed DOI
Waheed A. Sly W. S. Gene. 2017;623:33–40. doi: 10.1016/j.gene.2017.04.027. PubMed DOI PMC
Lau Y. H. de Andrade P. Wu Y. Spring D. R. Chem. Soc. Rev. 2015;44:91–102. doi: 10.1039/C4CS00246F. PubMed DOI
Li X. Chen S. Zhang W.-D. Hu H.-G. Chem. Rev. 2020;120:10079–10144. doi: 10.1021/acs.chemrev.0c00532. PubMed DOI
Shinbara K. Liu W. van Neer R. H. P. Katoh T. Suga H. Front. Chem. 2020:8. PubMed PMC
Samuel J. S. R. Nir Q. Curr. Top. Med. Chem. 2018;18:526–555. doi: 10.2174/1568026618666180518092333. PubMed DOI
Kale S. S. Villequey C. Kong X.-D. Zorzi A. Deyle K. Heinis C. Nat. Chem. 2018;10:715–723. doi: 10.1038/s41557-018-0042-7. PubMed DOI
Ng S. Derda R. Org. Biomol. Chem. 2016;14:5539–5545. doi: 10.1039/C5OB02646F. PubMed DOI
Mothukuri G. K. Kale S. S. Stenbratt C. L. Zorzi A. Vesin J. Bortoli Chapalay J. Deyle K. Turcatti G. Cendron L. Angelini A. Heinis C. Chem. Sci. 2020;11:7858–7863. doi: 10.1039/D0SC01944E. PubMed DOI PMC
Maola K. Wilbs J. Touati J. Sabisz M. Kong X.-D. Baumann A. Deyle K. Heinis C. Angew. Chem., Int. Ed. 2019;58:11801–11805. doi: 10.1002/anie.201906791. PubMed DOI
Ekanayake A. I. Sobze L. Kelich P. Youk J. Bennett N. J. Mukherjee R. Bhardwaj A. Wuest F. Vukovic L. Derda R. J. Am. Chem. Soc. 2021;143:5497–5507. doi: 10.1021/jacs.1c01186. PubMed DOI
Passioura T. Suga H. Chem. Commun. 2017;53:1931–1940. doi: 10.1039/C6CC06951G. PubMed DOI
Huang Y. Wiedmann M. M. Suga H. Chem. Rev. 2019;119:10360–10391. doi: 10.1021/acs.chemrev.8b00430. PubMed DOI