Identification of specific carbonic anhydrase inhibitors via in situ click chemistry, phage-display and synthetic peptide libraries: comparison of the methods and structural study

. 2023 Jan 25 ; 14 (1) : 144-153. [epub] 20221118

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36760748

The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage-display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor-peptide conjugates identified from the phage libraries showed greater than 100-fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitors.

Zobrazit více v PubMed

Carnero A. Clin. Transl. Oncol. 2006;8:482–490. doi: 10.1007/s12094-006-0048-2. PubMed DOI

Brown D. G. Boström J. J. Med. Chem. 2018;61:9442–9468. doi: 10.1021/acs.jmedchem.8b00675. PubMed DOI

Weigelt D. and Dorange I., in Lead Generation, ed. J. Holenz, 2016, pp. 93–132, 10.1002/9783527677047.ch05 DOI

Rideout D. Science. 1986;233:561–563. doi: 10.1126/science.3523757. PubMed DOI

Inglese J. Benkovic S. J. Tetrahedron. 1991;47:2351–2364. doi: 10.1016/S0040-4020(01)81773-7. DOI

Huc I. Lehn J.-M. Proc. Natl. Acad. Sci. U. S. A. 1997;94:2106–2110. doi: 10.1073/pnas.94.6.2106. PubMed DOI PMC

Nguyen R. Huc I. Angew. Chem., Int. Ed. 2001;40:1774–1776. doi: 10.1002/1521-3773(20010504)40:9<1774::AID-ANIE17740>3.0.CO;2-G. PubMed DOI

Jaegle M. Wong E. L. Tauber C. Nawrotzky E. Arkona C. Rademann J. Angew. Chem., Int. Ed. 2017;56:7358–7378. doi: 10.1002/anie.201610372. PubMed DOI PMC

Wichert M. Krall N. Decurtins W. Franzini R. M. Pretto F. Schneider P. Neri D. Scheuermann J. Nat. Chem. 2015;7:241–249. doi: 10.1038/nchem.2158. PubMed DOI

Erlanson D. A. McDowell R. S. O'Brien T. J. Med. Chem. 2004;47:3463–3482. doi: 10.1021/jm040031v. PubMed DOI

Erlanson D. A. Fesik S. W. Hubbard R. E. Jahnke W. Jhoti H. Nat. Rev. Drug Discovery. 2016;15:605–619. doi: 10.1038/nrd.2016.109. PubMed DOI

Unver M. Y. Gierse R. M. Ritchie H. Hirsch A. K. H. J. Med. Chem. 2018;61:9395–9409. doi: 10.1021/acs.jmedchem.8b00266. PubMed DOI

Bosc D. Camberlein V. Gealageas R. Castillo-Aguilera O. Deprez B. Deprez-Poulain R. J. Med. Chem. 2020;63:3817–3833. doi: 10.1021/acs.jmedchem.9b01183. PubMed DOI

Lossouarn A. Renard P. Y. Sabot C. Bioconjugate Chem. 2021;32:63–72. doi: 10.1021/acs.bioconjchem.0c00568. PubMed DOI

Hirose T. Maita N. Gouda H. Koseki J. Yamamoto T. Sugawara A. Nakano H. Hirono S. Shiomi K. Watanabe T. Taniguchi H. Sharpless K. B. Ōmura S. Sunazuka T. Proc. Natl. Acad. Sci. U. S. A. 2013;110:15892–15897. doi: 10.1073/pnas.1315049110. PubMed DOI PMC

Lewis W. G. Green L. G. Grynszpan F. Radić Z. Carlier P. R. Taylor P. Finn M. G. Sharpless K. B. Angew. Chem., Int. Ed. 2002;41:1053–1057. doi: 10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4. PubMed DOI

Mamidyala S. K. Finn M. G. Chem. Soc. Rev. 2010;39:1252–1261. doi: 10.1039/B901969N. PubMed DOI

Willand N. Desroses M. Toto P. Dirié B. Lens Z. Villeret V. Rucktooa P. Locht C. Baulard A. Deprez B. ACS Chem. Biol. 2010;5:1007–1013. doi: 10.1021/cb100177g. PubMed DOI

Bhardwaj A. Kaur J. Wuest M. Wuest F. Nat. Commun. 2017;8:1. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC

Mocharla V. P. Colasson B. Lee L. V. Röper S. Sharpless K. B. Wong C.-H. Kolb H. C. Angew. Chem., Int. Ed. 2005;44:116–120. doi: 10.1002/anie.200461580. PubMed DOI

Ng S. Jafari M. R. Matochko W. L. Derda R. ACS Chem. Biol. 2012;7:1482–1487. doi: 10.1021/cb300187t. PubMed DOI

Ng S. Lin E. Kitov P. I. Tjhung K. F. Gerlits O. O. Deng L. Kasper B. Sood A. Paschal B. M. Zhang P. Ling C.-C. Klassen J. S. Noren C. J. Mahal L. K. Woods R. J. Coates L. Derda R. J. Am. Chem. Soc. 2015;137:5248–5251. doi: 10.1021/ja511237n. PubMed DOI PMC

Tjhung K. F. Kitov P. I. Ng S. Kitova E. N. Deng L. Klassen J. S. Derda R. J. Am. Chem. Soc. 2016;138:32–35. doi: 10.1021/jacs.5b10390. PubMed DOI

Haapasalo J. Nordfors K. Jarvela S. Bragge H. Rantala I. Parkkila A. K. Haapasalo H. Parkkila S. Neuro. Oncol. 2007;9:308–313. doi: 10.1215/15228517-2007-001. PubMed DOI PMC

Supuran C. T. Scozzafava A. Bioorg. Med. Chem. 2007;15:4336–4350. doi: 10.1016/j.bmc.2007.04.020. PubMed DOI

Supuran C. T. Curr. Top. Med. Chem. 2007;7:825–833. doi: 10.2174/156802607780636690. PubMed DOI

Capasso C. and Supuran C. T., in Targeting Carbonic Anhydrases, 2014, pp. 6–16, 10.4155/fseb2013.13.43 DOI

Mishra C. B. Tiwari M. Supuran C. T. Med. Res. Rev. 2020;40:2485–2565. doi: 10.1002/med.21713. PubMed DOI

Jonsson B.-H. Liljas A. Biophys. J. 2020;119:1275–1280. doi: 10.1016/j.bpj.2020.08.020. PubMed DOI PMC

Supuran C. T. Expert Opin. Drug Discovery. 2017;12:61–88. doi: 10.1080/17460441.2017.1253677. PubMed DOI

Supuran C. T. Expert Opin. Drug Discovery. 2020;15:671–686. doi: 10.1080/17460441.2020.1743676. PubMed DOI

Goddard-Borger E. D. Stick R. V. Org. Lett. 2007;9:3797–3800. doi: 10.1021/ol701581g. PubMed DOI

Potter G. T. Jayson G. C. Miller G. J. Gardiner J. M. J. Org. Chem. 2016;81:3443–3446. doi: 10.1021/acs.joc.6b00177. PubMed DOI

Geoghegan K. F. Stroh J. G. Bioconjugate Chem. 1992;3:138–146. doi: 10.1021/bc00014a008. PubMed DOI

Jee J. E. Lim J. Ong Y. S. Oon J. Gao L. Choi H. S. Lee S. S. Org. Biomol. Chem. 2016;14:6833–6839. doi: 10.1039/C6OB01104G. PubMed DOI PMC

Li J. Shi K. Sabet Z. F. Fu W. Zhou H. Xu S. Liu T. You M. Cao M. Xu M. Cui X. Hu B. Liu Y. Chen C. Sci. Adv. 2019;5:eaax0937. doi: 10.1126/sciadv.aax0937. PubMed DOI PMC

Kanfar N. Tanc M. Dumy P. Supuran C. T. Ulrich S. Winum J. Y. Chem. – Eur. J. 2017;23:6788–6794. doi: 10.1002/chem.201700241. PubMed DOI

Furka A. Sebestyen F. Asgedom M. Dibo G. Int. J. Pept. Protein Res. 1991;37:487–493. doi: 10.1111/j.1399-3011.1991.tb00765.x. PubMed DOI

Lam K. S. Salmon S. E. Hersh E. M. Hruby V. J. Kazmierski W. M. Knapp R. J. Nature. 1991;354:82–84. doi: 10.1038/354082a0. PubMed DOI

Houghten R. A. Pinilla C. Blondelle S. E. Appel J. R. Dooley C. T. Cuervo J. H. Nature. 1991;354:84–86. doi: 10.1038/354084a0. PubMed DOI

Khalifah R. G. J. Biol. Chem. 1971;246:2561–2573. doi: 10.1016/S0021-9258(18)62326-9. PubMed DOI

Kugler M. Holub J. Brynda J. Pospíšilová K. Anwar S. E. Bavol D. Havránek M. Král V. Fábry M. Grüner B. Řezáčová P. J. Enzyme Inhib. Med. Chem. 2020;35:1800–1810. doi: 10.1080/14756366.2020.1816996. PubMed DOI PMC

Najm M. A. A. Mahmoud W. R. Taher A. T. Abbas S. E. S. Awadallah F. M. Allam H. A. Vullo D. Supuran C. T. J. Enzyme Inhib. Med. Chem. 2022;37:2702–2709. doi: 10.1080/14756366.2022.2126463. PubMed DOI PMC

Komnatnyy V. V. Nielsen T. E. Qvortrup K. Chem. Commun. 2018;54:6759–6771. doi: 10.1039/C8CC02486C. PubMed DOI

Pei D. Appiah Kubi G. Expert Opin. Drug Discovery. 2019;14:1097–1102. doi: 10.1080/17460441.2019.1647164. PubMed DOI PMC

Krishnamurthy V. M. Kaufman G. K. Urbach A. R. Gitlin I. Gudiksen K. L. Weibel D. B. Whitesides G. M. Chem. Rev. 2008;108:946–1051. doi: 10.1021/cr050262p. PubMed DOI PMC

Cheng X. Veverka V. Radhakrishnan A. Waters L. C. Muskett F. W. Morgan S. H. Huo J. Yu C. Evans E. J. Leslie A. J. Griffiths M. Stubberfield C. Griffin R. Henry A. J. Jansson A. Ladbury J. E. Ikemizu S. Carr M. D. Davis S. J. J. Biol. Chem. 2013;288:11771–11785. doi: 10.1074/jbc.M112.448126. PubMed DOI PMC

Sersen S. Traven K. Kljun J. Turel I. Supuran C. T. J. Enzyme Inhib. Med. Chem. 2019;34:388–393. doi: 10.1080/14756366.2018.1547288. PubMed DOI PMC

Lindskog S. Pharmacol. Ther. 1997;74:1–20. doi: 10.1016/S0163-7258(96)00198-2. PubMed DOI

Waheed A. Sly W. S. Gene. 2017;623:33–40. doi: 10.1016/j.gene.2017.04.027. PubMed DOI PMC

Lau Y. H. de Andrade P. Wu Y. Spring D. R. Chem. Soc. Rev. 2015;44:91–102. doi: 10.1039/C4CS00246F. PubMed DOI

Li X. Chen S. Zhang W.-D. Hu H.-G. Chem. Rev. 2020;120:10079–10144. doi: 10.1021/acs.chemrev.0c00532. PubMed DOI

Shinbara K. Liu W. van Neer R. H. P. Katoh T. Suga H. Front. Chem. 2020:8. PubMed PMC

Samuel J. S. R. Nir Q. Curr. Top. Med. Chem. 2018;18:526–555. doi: 10.2174/1568026618666180518092333. PubMed DOI

Kale S. S. Villequey C. Kong X.-D. Zorzi A. Deyle K. Heinis C. Nat. Chem. 2018;10:715–723. doi: 10.1038/s41557-018-0042-7. PubMed DOI

Ng S. Derda R. Org. Biomol. Chem. 2016;14:5539–5545. doi: 10.1039/C5OB02646F. PubMed DOI

Mothukuri G. K. Kale S. S. Stenbratt C. L. Zorzi A. Vesin J. Bortoli Chapalay J. Deyle K. Turcatti G. Cendron L. Angelini A. Heinis C. Chem. Sci. 2020;11:7858–7863. doi: 10.1039/D0SC01944E. PubMed DOI PMC

Maola K. Wilbs J. Touati J. Sabisz M. Kong X.-D. Baumann A. Deyle K. Heinis C. Angew. Chem., Int. Ed. 2019;58:11801–11805. doi: 10.1002/anie.201906791. PubMed DOI

Ekanayake A. I. Sobze L. Kelich P. Youk J. Bennett N. J. Mukherjee R. Bhardwaj A. Wuest F. Vukovic L. Derda R. J. Am. Chem. Soc. 2021;143:5497–5507. doi: 10.1021/jacs.1c01186. PubMed DOI

Passioura T. Suga H. Chem. Commun. 2017;53:1931–1940. doi: 10.1039/C6CC06951G. PubMed DOI

Huang Y. Wiedmann M. M. Suga H. Chem. Rev. 2019;119:10360–10391. doi: 10.1021/acs.chemrev.8b00430. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace