Graphene-based 3D-Printed nanocomposite bioelectronics for monitoring breast cancer cell adhesion
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36764127
DOI
10.1016/j.bios.2023.115113
PII: S0956-5663(23)00055-6
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-printed electrodes, Additive manufacturing, Anti-cancer drugs, Breast cancer cells, Electrochemical impedance spectroscopy,
- MeSH
- 3D tisk MeSH
- biosenzitivní techniky * metody MeSH
- buněčná adheze MeSH
- grafit * chemie MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory prsu * MeSH
- nanokompozity * MeSH
- protinádorové látky * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- grafit * MeSH
- protinádorové látky * MeSH
This work examines the suitability of graphene-based 3D-printed nanocomposite bioelectronics as innovative systems to in situ monitor and evaluate both breast cancer cell adhesion and the chemosensitivity of anti-cancer drugs. With this aim, 3D-printed nanocomposite graphene electrodes (3D-nGEs) -made of a commercially available graphene/polylactic acid filament- have been covalently biofunctionalized with an extracellular matrix protein (i.e., fibronectin) by exploiting the carbon reactivity of 3D-nGEs. The specificity and selectivity of the developed electrochemical system to monitor breast cancer cell adhesion has been tested via electrochemical impedance spectroscopy (EIS). Importantly, the resulting 3D-printed bioelectronic system displayed excellent accuracy for the rapid screening of anti-cancer drugs, which exactly corresponded with the results achieved by the standard optical method, while having the advantage of employing a label-free approach. In light of the current state-of-the-art in the field, this proof-of-concept connects electronics to biological systems within 3D printing technology, providing the bases for the sustainable and cost-effective manufacturing of graphene-based 3D-printed nanocomposite bioelectronics to simulate in vivo microenvironments using in situ and real time electronic output signals.
Citace poskytuje Crossref.org