Pathway and Network Analyses Identify Growth Factor Signaling and MMP9 as Potential Mediators of Mitochondrial Dysfunction in Severe COVID-19

. 2023 Jan 28 ; 24 (3) : . [epub] 20230128

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36768847

Grantová podpora
CT28701/G207593 Snow Medical Research Foundation Limited
APPRISE AppID 1116530 National Health and Medical Research Council
2-U19-AI100625-06 Helmholtz-Association
5U19A|100625-07 NIAID NIH HHS - United States
2007919 National Health and Medical Research Council

Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.

Centre for Clinical Research in Emergency Medicine Harry Perkins Institute of Medical Research Royal Perth Hospital Perth WA 6000 Australia

Centre for Clinical Research in Emergency Medicine Royal Perth Bentley Group Perth WA 6000 Australia

Centre for Immunology and Allergy Research The Westmead Institute for Medical Research Sydney NSW 2145 Australia

Centre for Infectious Diseases and Microbiology The Westmead Institute for Medical Research Sydney NSW 2145 Australia

Department of Infectious Diseases The University of Melbourne at the Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia

Department of Intensive Care Medicine Nepean Hospital Kingswood NSW 2747 Australia

Department of Microbiology Immunology and Biochemistry University of Tennessee Health Science Center Memphis TN 38163 USA

Department of Microbiology St George Hospital Sydney NSW 2217 Australia

Emergency Department Royal Perth Hospital Perth WA 6000 Australia

Faculty of Medicine and Health School of Medical Sciences The University of Sydney Sydney NSW 2145 Australia

Faculty of Medicine and Health Sydney Medical School Nepean Nepean Hospital The University of Sydney Kingswood NSW 2747 Australia

Faculty of Medicine and Health Sydney Medical School Westmead Westmead Hospital The University of Sydney Sydney NSW 2145 Australia

Institute of Virology Münster University of Münster 48149 Münster Germany

Medical ICU 1st Department of Internal Medicine Charles University and Teaching Hospital Pilsen 323 00 Plzeň Czech Republic

Medical School University of Western Australia Perth WA 6009 Australia

Research and Education Network Western Sydney Local Health District Westmead Hospital CNR Darcy and Hawkesbury Roads Sydney NSW 2145 Australia

School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD 4072 Australia

Sydney Informatics Hub Core Research Facilities The University of Sydney Sydney NSW 2006 Australia

Sydney Institute for Infectious Disease The University of Sydney Sydney NSW 2145 Australia

Victorian Infectious Disease Service The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity Melbourne VIC 3050 Australia

Westmead Hospital Western Sydney Local Health District Sydney NSW 2145 Australia

Zobrazit více v PubMed

Wu Z., McGoogan J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648. PubMed DOI

Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., Péré H., Charbit B., Bondet V., Chenevier-Gobeaux C., et al. Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science. 2020;369:718–724. doi: 10.1126/science.abc6027. PubMed DOI PMC

Lei X., Dong X., Ma R., Wang W., Xiao X., Tian Z., Wang C., Wang Y., Li L., Ren L., et al. Activation and Evasion of Type I Interferon Responses by SARS-COV-2. Nat. Commun. 2020;11:3810. doi: 10.1038/s41467-020-17665-9. PubMed DOI PMC

Palermo E., Di Carlo D., Sgarbanti M., Hiscott J. Type I Interferons in COVID-19 Pathogenesis. Biology. 2021;10:829. doi: 10.3390/biology10090829. PubMed DOI PMC

Masso-Silva A.J., Moshensky A., Lam M.T.Y., Odish M.F., Patel A., Xu L., Hansen E., Trescott S., Nguyen C., Kim R., et al. Increased Peripheral Blood Neutrophil Activation Phenotypes and Neutrophil Extracellular Trap Formation in Critically Ill Coronavirus Disease 2019 (COVID-19) Patients: A Case Series and Review of the Literature. Clin. Infect. Dis. 2021;74:479–489. doi: 10.1093/cid/ciab437. PubMed DOI PMC

Meizlish M.L., Pine A.B., Bishai J.D., Goshua G., Nadelmann E.R., Simonov M., Chang C.-H., Zhang H., Shallow M., Bahel P., et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021;5:1164–1177. doi: 10.1182/bloodadvances.2020003568. PubMed DOI PMC

Aschenbrenner A., Mouktaroudi M., Krämer B., Oestreich M., Antonakos N., Nuesch-Germano M., Gkizeli K., Bonaguro L., Reusch N., Baßler K., et al. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med. 2021;13:1–25. doi: 10.1186/s13073-020-00823-5. PubMed DOI PMC

Tan L., Wang Q., Zhang D., Ding J., Huang Q., Tang Y., Wang Q., Miao Q. Lymphopenia Predicts Disease Severity of COVID-19: A Descriptive and Predictive Study. Signal Transduct. Target Ther. 2020;5:33. doi: 10.1038/s41392-020-0148-4. PubMed DOI PMC

Huang I., Pranata R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care. 2020;8:36. doi: 10.1186/s40560-020-00453-4. PubMed DOI PMC

van de Veerdonk F.L., Giamarellos-Bourboulis E., Pickkers P., Derde L., Leavis H., van Crevel R., Engel J.J., Wiersinga W.J., Vlaar A.P.J., Shankar-Hari M., et al. A guide to immunotherapy for COVID-19. Nat. Med. 2022;28:39–50. doi: 10.1038/s41591-021-01643-9. PubMed DOI

Lercher A., Baazim H., Bergthaler A. Systemic Immunometabolism: Challenges and Opportunities. Immunity. 2020;53:496–509. doi: 10.1016/j.immuni.2020.08.012. PubMed DOI PMC

Pearce E.L., Pearce E.J. Metabolic Pathways in Immune Cell Activation and Quiescence. Immunity. 2013;38:633–643. doi: 10.1016/j.immuni.2013.04.005. PubMed DOI PMC

Batabyal R., Freishtat N., Hill E., Rehman M., Freishtat R., Koutroulis I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int. J. Obes. 2021;45:1163–1169. doi: 10.1038/s41366-021-00804-7. PubMed DOI PMC

Kapnick S.M., Pacheco S.E., McGuire P.J. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism. Metabolism. 2018;81:97–112. doi: 10.1016/j.metabol.2017.11.010. PubMed DOI PMC

Gregory J.M., Slaughter J.C., Duffus S.H., Smith T.J., LeStourgeon L.M., Jaser S.S., McCoy A.B., Luther J.M., Giovannetti E.R., Boeder S., et al. COVID-19 Severity Is Tripled in the Diabetes Community: A Prospective Analysis of the Pandemic’s Impact in Type 1 and Type 2 Diabetes. Diabetes Care. 2020;44:526–532. doi: 10.2337/dc20-2260. PubMed DOI PMC

Stefan N., Birkenfeld A.L., Schulze M.B. Global Pandemics Interconnected-Obesity, Impaired Metabolic Health and COVID-19. Nat. Rev. Endocrinol. 2021;17:135–149. doi: 10.1038/s41574-020-00462-1. PubMed DOI

Engel F.L. The endocrine control of metabolism. Bull. N. Y. Acad. Med. 1953;29:175–201. PubMed PMC

Norton L., Shannon C., Gastaldelli A., DeFronzo R.A. Insulin: The master regulator of glucose metabolism. Metabolism. 2022;129:155142. doi: 10.1016/j.metabol.2022.155142. PubMed DOI

Perdomo G., Martinez-Brocca M.A., Bhatt B.A., Brown N.F., O’Doherty R.M., Garcia-Ocaña A. Hepatocyte Growth Factor Is a Novel Stimulator of Glucose Uptake and Metabolism in Skeletal Muscle Cells. J. Biol. Chem. 2008;283:13700–13706. doi: 10.1074/jbc.M707551200. PubMed DOI PMC

Leroith D., Yakar S. Mechanisms of Disease: Metabolic effects of growth hormone and insulin-like growth factor 1. Nat. Clin. Pract. Endocrinol. Metab. 2007;3:302–310. doi: 10.1038/ncpendmet0427. PubMed DOI

Wolters T.L.C., Netea M.G., Hermus A.R.M.M., Smit J.W.A., Netea-Maier R.T. IGF1 potentiates the pro-inflammatory response in human peripheral blood mononuclear cells via MAPK. J. Mol. Endocrinol. 2017;59:129–139. doi: 10.1530/JME-17-0062. PubMed DOI

Papaccio F., Della Corte C.M., Viscardi G., Di Liello R., Esposito G., Sparano F., Ciardiello F., Morgillo F. HGF/MET and the Immune System: Relevance for Cancer Immunotherapy. Int. J. Mol. Sci. 2018;19:3595. doi: 10.3390/ijms19113595. PubMed DOI PMC

Van Niekerk G., Christowitz C., Conradie D., Engelbrecht A.M. Insulin as an Immunomodulatory Hormone. Cytokine Growth Factor Rev. 2020;52:34–44. doi: 10.1016/j.cytogfr.2019.11.006. PubMed DOI

Antico Arciuch V.G., Elguero M.E., Poderoso J.J., Carreras M.C. Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 2012;16:1150–1180. doi: 10.1089/ars.2011.4085. PubMed DOI PMC

Bock F.J., Tait S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2019;21:85–100. doi: 10.1038/s41580-019-0173-8. PubMed DOI

Estaquier J., Vallette F., Vayssiere J.L., Mignotte B. The Mitochondrial Pathways of Apoptosis. Adv. Exp. Med. Biol. 2012;942:157–183. PubMed

Koshiba T., Bashiruddin N., Kawabata S. Mitochondria and antiviral innate immunity. Int. J. Biochem. Mol. Biol. 2011;2:257–262. PubMed PMC

Refolo G., Vescovo T., Piacentini M., Fimia G.M., Ciccosanti F. Mitochondrial Interactome: A Focus on Antiviral Signaling Pathways. Front. Cell Dev. Biol. 2020;8:8. doi: 10.3389/fcell.2020.00008. PubMed DOI PMC

Mehta M., Weinberg S., Chandel N.S. Mitochondrial control of immunity: Beyond ATP. Nat. Rev. Immunol. 2017;17:608–620. doi: 10.1038/nri.2017.66. PubMed DOI

Walker M.A., Slate N., Alejos A., Volpi S., Iyengar R.S., Sweetser D., Sims K.B., Walter J.E. Predisposition to infection and SIRS in mitochondrial disorders: 8 years’ experience in an academic center. J. Allergy Clin. Immunol. Pract. 2014;2:465–468.e1. doi: 10.1016/j.jaip.2014.02.009. PubMed DOI

Walker M.A., Volpi S., Sims K.B., Walter J.E., Traggiai E. Powering the Immune System: Mitochondria in Immune Function and Deficiency. J. Immunol. Res. 2014;2014:164309. doi: 10.1155/2014/164309. PubMed DOI PMC

Ploumi C., Daskalaki I., Tavernarakis N. Mitochondrial biogenesis and clearance: A balancing act. FEBS J. 2016;284:183–195. doi: 10.1111/febs.13820. PubMed DOI

Riis S., Murray J.B., O’Connor R. Igf-1 Signalling Regulates Mitochondria Dynamics and Turnover through a Conserved Gsk-3β-Nrf2-Bnip3 Pathway. Cells. 2020;9:147. doi: 10.3390/cells9010147. PubMed DOI PMC

Lyons A., Coleman M., Riis S., Favre C., O’Flanagan C.H., Zhdanov A.V., Papkovsky D.B., Hursting S.D., O’Connor R. Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells. J. Biol. Chem. 2017;292:16983–16998. doi: 10.1074/jbc.M117.792838. PubMed DOI PMC

Cherry A.D., Piantadosi C.A. Regulation of Mitochondrial Biogenesis and Its Intersection with Inflammatory Responses. Antioxid. Redox Signal. 2015;22:965–976. doi: 10.1089/ars.2014.6200. PubMed DOI PMC

Elesela S., Lukacs N. Role of Mitochondria in Viral Infections. Life. 2021;11:232. doi: 10.3390/life11030232. PubMed DOI PMC

Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K., O’Meara M., Rezelj M.J., Guo V., Swaney V., et al. A SARS-COV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature. 2020;583:459–468. doi: 10.1038/s41586-020-2286-9. PubMed DOI PMC

Wu K.E., Fazal F.M., Parker K.R., Zou J., Chang H.Y. Rna-Gps Predicts SARS-COV-2 Rna Residency to Host Mitochondria and Nucleolus. Cell Syst. 2020;11:102–108.e3. doi: 10.1016/j.cels.2020.06.008. PubMed DOI PMC

Singh K.K., Chaubey G., Chen J.Y., Suravajhala P. Decoding SARS-COV-2 Hijacking of Host Mitochondria in COVID-19 Pathogenesis. Am. J. Physiol. Cell Physiol. 2020;319:C258–C267. doi: 10.1152/ajpcell.00224.2020. PubMed DOI PMC

Miller B., Silverstein A., Flores M., Cao K., Kumagai H., Mehta H.H., Yen K., Kim S.J., Cohen P. Host Mitochondrial Transcriptome Response to SARS-COV-2 in Multiple Cell Models and Clinical Samples. Sci. Rep. 2021;11:3. doi: 10.1038/s41598-020-79552-z. PubMed DOI PMC

Singh K., Chen Y.C., Hassanzadeh S., Han K., Judy J.T., Seifuddin F., Tunc I., Sack M.N., Pirooznia M. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-COV-2 Infection. Front Genet. 2021;12:599261. doi: 10.3389/fgene.2021.599261. PubMed DOI PMC

Sharma N.K., Sarode S.C. Do Compromised Mitochondria Aggravate Severity and Fatality by SARS-COV-2? Curr. Med. Res. Opin. 2022;38:911–916. doi: 10.1080/03007995.2022.2065140. PubMed DOI PMC

Santos A.F., Póvoa P., Paixão P., Mendonça A., Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID-19. Front Chem. 2021;9:685196. doi: 10.3389/fchem.2021.685196. PubMed DOI PMC

Codo A.C., Davanzo G.G., Monteiro L.B., de Souza G.F., Muraro S.P., Virgilio-da-Silva J.V., Prodonoff J.S., Carregari V.C., de Biagi Junior C.A., Crunfli O.F., et al. Elevated Glucose Levels Favor SARS-COV-2 Infection and Monocyte Response through a Hif-1α/Glycolysis-Dependent Axis. Cell Metab. 2020;32:437–446.e5. doi: 10.1016/j.cmet.2020.07.007. PubMed DOI PMC

Page-McCaw A., Ewald A.J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007;8:221–233. doi: 10.1038/nrm2125. PubMed DOI PMC

Hardy E., Fernandez-Patron C. Targeting MMP-Regulation of Inflammation to Increase Metabolic Tolerance to COVID-19 Pathologies: A Hypothesis. Biomolecules. 2021;11:390. doi: 10.3390/biom11030390. PubMed DOI PMC

Savic G., Stevanovic I., Mihajlovic D., Jurisevic M., Gajovic N., Jovanovic I., Ninkovic M. MMP-9/BDNF Ratio Predicts More Severe COVID-19 Outcomes. Int. J. Med. Sci. 2022;19:1903–1911. doi: 10.7150/ijms.75337. PubMed DOI PMC

Elkington P.T., O’Kane C.M., Friedland J.S. The paradox of matrix metalloproteinases in infectious disease. Clin. Exp. Immunol. 2005;142:12–20. doi: 10.1111/j.1365-2249.2005.02840.x. PubMed DOI PMC

Bassiouni W., Ali MA M., Schulz R. Multifunctional Intracellular Matrix Metalloproteinases: Implications in Disease. FEBS J. 2021;288:7162–7182. doi: 10.1111/febs.15701. PubMed DOI

Kowluru A.R., Zhong Q., Santos J.M. Matrix metalloproteinases in diabetic retinopathy: Potential role of MMP-9. Expert Opin. Investig. Drugs. 2012;21:797–805. doi: 10.1517/13543784.2012.681043. PubMed DOI PMC

Santos J.M., Tewari S., Lin J.Y., Kowluru R.A. Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy. Biochem. Biophys. Res. Commun. 2013;438:760–764. doi: 10.1016/j.bbrc.2013.07.066. PubMed DOI PMC

Brás L.E.D.C., Cates C.A., DeLeon-Pennell K.Y., Ma Y., Iyer R.P., Halade G.V., Yabluchanskiy A., Fields G.B., Weintraub S.T., Lindsey M.L. Citrate Synthase Is a Novel in vivo matrix Metalloproteinase-9 substrate that Regulates Mitochondrial Function in the Postmyocardial Infarction Left Ventricle. Antioxidants Redox Signal. 2014;21:1974–1985. doi: 10.1089/ars.2013.5411. PubMed DOI PMC

Harris P.A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010. PubMed DOI PMC

Harris P.A., Taylor R., Minor B.L., Elliott V., Fernandez M., O’Neal L., McLeod L., Delacqua G., Delacqua F., Kirby J., et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208. PubMed DOI PMC

Liberzon A., Subramanian A., Pinchback R., Thorvaldsdóttir H., Tamayo P., Mesirov J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–1740. doi: 10.1093/bioinformatics/btr260. PubMed DOI PMC

Chew T., Sadsad R. Rnaseq-De (Version 1.0) [Computer Software] 2022. [(accessed on 1 February 2022)]. Available online: DOI

Bushnell B. Bbmap: A Fast, Accurate, Splice-Aware Aligner. Lawrence Berkeley National Lab; Berkeley, CA, USA: 2014.

Andrews S. Fastqc: A Quality Control Tool for High Throughput Sequence Data. Baraham Bioinformatics; Babraham, Cambridge, UK: 2010.

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Anders S., Pyl P.T., Huber W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC

Durinck S., Moreau Y., Kasprzyk A., Davis S., De Moor B., Brazma A., Huber W. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–3440. doi: 10.1093/bioinformatics/bti525. PubMed DOI

Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-SEQ Data with DESEQ2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Ritchie M.E., Silver J., Oshlack A., Holmes M., Diyagama D., Holloway A., Smyth G.K. A comparison of background correction methods for two-colour microarrays. Bioinformatics. 2007;23:2700–2707. doi: 10.1093/bioinformatics/btm412. PubMed DOI

Smyth G.K. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat. Appl. Genet. Mol. Biol. 2004;3:1027. doi: 10.2202/1544-6115.1027. PubMed DOI

Blighe K., Rana S., Lewis M. Enhancedvolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. [(accessed on 1 February 2022)]. Available online: http://bioconductor.riken.jp/packages/3.11/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html.

R Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2022. [(accessed on 23 June 2022)]. Available online: https://www.R-project.org/

Finotello F., Mayer C., Plattner C., Laschober G., Rieder D., Hackl H., Krogsdam A., Loncova Z., Posch W., Wilflingseder D., et al. Molecular and Pharmacological Modulators of the Tumor Immune Contexture Revealed by Deconvolution of Rna-Seq Data. Genome Med. 2019;11:34. doi: 10.1186/s13073-019-0638-6. PubMed DOI PMC

Becht E., Giraldo N.A., Lacroix L., Buttard B., Elarouci N., Petitprez F., Selves J., Laurent-Puig P., Sautès-Fridman C., Fridman W.H., et al. Estimating The population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression. Genome Biol. 2016;17:218. doi: 10.1186/s13059-016-1070-5. PubMed DOI PMC

Yu G., Wang L.G., Han Y., He Q.Y. Clusterprofiler: An R Package for Comparing Biological Themes among Gene Clusters. Omics. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular landscape of respiratory infection: A large-scale, multi-centre blood transcriptome dataset

. 2025 Jul 10 ; 12 (1) : 1175. [epub] 20250710

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...