Pathway and Network Analyses Identify Growth Factor Signaling and MMP9 as Potential Mediators of Mitochondrial Dysfunction in Severe COVID-19
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CT28701/G207593
Snow Medical Research Foundation Limited
APPRISE AppID 1116530
National Health and Medical Research Council
2-U19-AI100625-06
Helmholtz-Association
5U19A|100625-07
NIAID NIH HHS - United States
2007919
National Health and Medical Research Council
PubMed
36768847
PubMed Central
PMC9917147
DOI
10.3390/ijms24032524
PII: ijms24032524
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, DEG, MMP9, Metacore, RNA sequencing, endocrine, metabolism,
- MeSH
- COVID-19 * MeSH
- lidé MeSH
- matrixová metaloproteinasa 9 genetika metabolismus MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- mitochondrie metabolismus MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- matrixová metaloproteinasa 9 MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- MMP9 protein, human MeSH Prohlížeč
Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.
Centre for Clinical Research in Emergency Medicine Royal Perth Bentley Group Perth WA 6000 Australia
Department of Intensive Care Medicine Nepean Hospital Kingswood NSW 2747 Australia
Department of Microbiology St George Hospital Sydney NSW 2217 Australia
Emergency Department Royal Perth Hospital Perth WA 6000 Australia
Institute of Virology Münster University of Münster 48149 Münster Germany
Medical School University of Western Australia Perth WA 6009 Australia
Sydney Informatics Hub Core Research Facilities The University of Sydney Sydney NSW 2006 Australia
Sydney Institute for Infectious Disease The University of Sydney Sydney NSW 2145 Australia
Westmead Hospital Western Sydney Local Health District Sydney NSW 2145 Australia
Zobrazit více v PubMed
Wu Z., McGoogan J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648. PubMed DOI
Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., Péré H., Charbit B., Bondet V., Chenevier-Gobeaux C., et al. Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science. 2020;369:718–724. doi: 10.1126/science.abc6027. PubMed DOI PMC
Lei X., Dong X., Ma R., Wang W., Xiao X., Tian Z., Wang C., Wang Y., Li L., Ren L., et al. Activation and Evasion of Type I Interferon Responses by SARS-COV-2. Nat. Commun. 2020;11:3810. doi: 10.1038/s41467-020-17665-9. PubMed DOI PMC
Palermo E., Di Carlo D., Sgarbanti M., Hiscott J. Type I Interferons in COVID-19 Pathogenesis. Biology. 2021;10:829. doi: 10.3390/biology10090829. PubMed DOI PMC
Masso-Silva A.J., Moshensky A., Lam M.T.Y., Odish M.F., Patel A., Xu L., Hansen E., Trescott S., Nguyen C., Kim R., et al. Increased Peripheral Blood Neutrophil Activation Phenotypes and Neutrophil Extracellular Trap Formation in Critically Ill Coronavirus Disease 2019 (COVID-19) Patients: A Case Series and Review of the Literature. Clin. Infect. Dis. 2021;74:479–489. doi: 10.1093/cid/ciab437. PubMed DOI PMC
Meizlish M.L., Pine A.B., Bishai J.D., Goshua G., Nadelmann E.R., Simonov M., Chang C.-H., Zhang H., Shallow M., Bahel P., et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021;5:1164–1177. doi: 10.1182/bloodadvances.2020003568. PubMed DOI PMC
Aschenbrenner A., Mouktaroudi M., Krämer B., Oestreich M., Antonakos N., Nuesch-Germano M., Gkizeli K., Bonaguro L., Reusch N., Baßler K., et al. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med. 2021;13:1–25. doi: 10.1186/s13073-020-00823-5. PubMed DOI PMC
Tan L., Wang Q., Zhang D., Ding J., Huang Q., Tang Y., Wang Q., Miao Q. Lymphopenia Predicts Disease Severity of COVID-19: A Descriptive and Predictive Study. Signal Transduct. Target Ther. 2020;5:33. doi: 10.1038/s41392-020-0148-4. PubMed DOI PMC
Huang I., Pranata R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care. 2020;8:36. doi: 10.1186/s40560-020-00453-4. PubMed DOI PMC
van de Veerdonk F.L., Giamarellos-Bourboulis E., Pickkers P., Derde L., Leavis H., van Crevel R., Engel J.J., Wiersinga W.J., Vlaar A.P.J., Shankar-Hari M., et al. A guide to immunotherapy for COVID-19. Nat. Med. 2022;28:39–50. doi: 10.1038/s41591-021-01643-9. PubMed DOI
Lercher A., Baazim H., Bergthaler A. Systemic Immunometabolism: Challenges and Opportunities. Immunity. 2020;53:496–509. doi: 10.1016/j.immuni.2020.08.012. PubMed DOI PMC
Pearce E.L., Pearce E.J. Metabolic Pathways in Immune Cell Activation and Quiescence. Immunity. 2013;38:633–643. doi: 10.1016/j.immuni.2013.04.005. PubMed DOI PMC
Batabyal R., Freishtat N., Hill E., Rehman M., Freishtat R., Koutroulis I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int. J. Obes. 2021;45:1163–1169. doi: 10.1038/s41366-021-00804-7. PubMed DOI PMC
Kapnick S.M., Pacheco S.E., McGuire P.J. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism. Metabolism. 2018;81:97–112. doi: 10.1016/j.metabol.2017.11.010. PubMed DOI PMC
Gregory J.M., Slaughter J.C., Duffus S.H., Smith T.J., LeStourgeon L.M., Jaser S.S., McCoy A.B., Luther J.M., Giovannetti E.R., Boeder S., et al. COVID-19 Severity Is Tripled in the Diabetes Community: A Prospective Analysis of the Pandemic’s Impact in Type 1 and Type 2 Diabetes. Diabetes Care. 2020;44:526–532. doi: 10.2337/dc20-2260. PubMed DOI PMC
Stefan N., Birkenfeld A.L., Schulze M.B. Global Pandemics Interconnected-Obesity, Impaired Metabolic Health and COVID-19. Nat. Rev. Endocrinol. 2021;17:135–149. doi: 10.1038/s41574-020-00462-1. PubMed DOI
Engel F.L. The endocrine control of metabolism. Bull. N. Y. Acad. Med. 1953;29:175–201. PubMed PMC
Norton L., Shannon C., Gastaldelli A., DeFronzo R.A. Insulin: The master regulator of glucose metabolism. Metabolism. 2022;129:155142. doi: 10.1016/j.metabol.2022.155142. PubMed DOI
Perdomo G., Martinez-Brocca M.A., Bhatt B.A., Brown N.F., O’Doherty R.M., Garcia-Ocaña A. Hepatocyte Growth Factor Is a Novel Stimulator of Glucose Uptake and Metabolism in Skeletal Muscle Cells. J. Biol. Chem. 2008;283:13700–13706. doi: 10.1074/jbc.M707551200. PubMed DOI PMC
Leroith D., Yakar S. Mechanisms of Disease: Metabolic effects of growth hormone and insulin-like growth factor 1. Nat. Clin. Pract. Endocrinol. Metab. 2007;3:302–310. doi: 10.1038/ncpendmet0427. PubMed DOI
Wolters T.L.C., Netea M.G., Hermus A.R.M.M., Smit J.W.A., Netea-Maier R.T. IGF1 potentiates the pro-inflammatory response in human peripheral blood mononuclear cells via MAPK. J. Mol. Endocrinol. 2017;59:129–139. doi: 10.1530/JME-17-0062. PubMed DOI
Papaccio F., Della Corte C.M., Viscardi G., Di Liello R., Esposito G., Sparano F., Ciardiello F., Morgillo F. HGF/MET and the Immune System: Relevance for Cancer Immunotherapy. Int. J. Mol. Sci. 2018;19:3595. doi: 10.3390/ijms19113595. PubMed DOI PMC
Van Niekerk G., Christowitz C., Conradie D., Engelbrecht A.M. Insulin as an Immunomodulatory Hormone. Cytokine Growth Factor Rev. 2020;52:34–44. doi: 10.1016/j.cytogfr.2019.11.006. PubMed DOI
Antico Arciuch V.G., Elguero M.E., Poderoso J.J., Carreras M.C. Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 2012;16:1150–1180. doi: 10.1089/ars.2011.4085. PubMed DOI PMC
Bock F.J., Tait S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2019;21:85–100. doi: 10.1038/s41580-019-0173-8. PubMed DOI
Estaquier J., Vallette F., Vayssiere J.L., Mignotte B. The Mitochondrial Pathways of Apoptosis. Adv. Exp. Med. Biol. 2012;942:157–183. PubMed
Koshiba T., Bashiruddin N., Kawabata S. Mitochondria and antiviral innate immunity. Int. J. Biochem. Mol. Biol. 2011;2:257–262. PubMed PMC
Refolo G., Vescovo T., Piacentini M., Fimia G.M., Ciccosanti F. Mitochondrial Interactome: A Focus on Antiviral Signaling Pathways. Front. Cell Dev. Biol. 2020;8:8. doi: 10.3389/fcell.2020.00008. PubMed DOI PMC
Mehta M., Weinberg S., Chandel N.S. Mitochondrial control of immunity: Beyond ATP. Nat. Rev. Immunol. 2017;17:608–620. doi: 10.1038/nri.2017.66. PubMed DOI
Walker M.A., Slate N., Alejos A., Volpi S., Iyengar R.S., Sweetser D., Sims K.B., Walter J.E. Predisposition to infection and SIRS in mitochondrial disorders: 8 years’ experience in an academic center. J. Allergy Clin. Immunol. Pract. 2014;2:465–468.e1. doi: 10.1016/j.jaip.2014.02.009. PubMed DOI
Walker M.A., Volpi S., Sims K.B., Walter J.E., Traggiai E. Powering the Immune System: Mitochondria in Immune Function and Deficiency. J. Immunol. Res. 2014;2014:164309. doi: 10.1155/2014/164309. PubMed DOI PMC
Ploumi C., Daskalaki I., Tavernarakis N. Mitochondrial biogenesis and clearance: A balancing act. FEBS J. 2016;284:183–195. doi: 10.1111/febs.13820. PubMed DOI
Riis S., Murray J.B., O’Connor R. Igf-1 Signalling Regulates Mitochondria Dynamics and Turnover through a Conserved Gsk-3β-Nrf2-Bnip3 Pathway. Cells. 2020;9:147. doi: 10.3390/cells9010147. PubMed DOI PMC
Lyons A., Coleman M., Riis S., Favre C., O’Flanagan C.H., Zhdanov A.V., Papkovsky D.B., Hursting S.D., O’Connor R. Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells. J. Biol. Chem. 2017;292:16983–16998. doi: 10.1074/jbc.M117.792838. PubMed DOI PMC
Cherry A.D., Piantadosi C.A. Regulation of Mitochondrial Biogenesis and Its Intersection with Inflammatory Responses. Antioxid. Redox Signal. 2015;22:965–976. doi: 10.1089/ars.2014.6200. PubMed DOI PMC
Elesela S., Lukacs N. Role of Mitochondria in Viral Infections. Life. 2021;11:232. doi: 10.3390/life11030232. PubMed DOI PMC
Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K., O’Meara M., Rezelj M.J., Guo V., Swaney V., et al. A SARS-COV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature. 2020;583:459–468. doi: 10.1038/s41586-020-2286-9. PubMed DOI PMC
Wu K.E., Fazal F.M., Parker K.R., Zou J., Chang H.Y. Rna-Gps Predicts SARS-COV-2 Rna Residency to Host Mitochondria and Nucleolus. Cell Syst. 2020;11:102–108.e3. doi: 10.1016/j.cels.2020.06.008. PubMed DOI PMC
Singh K.K., Chaubey G., Chen J.Y., Suravajhala P. Decoding SARS-COV-2 Hijacking of Host Mitochondria in COVID-19 Pathogenesis. Am. J. Physiol. Cell Physiol. 2020;319:C258–C267. doi: 10.1152/ajpcell.00224.2020. PubMed DOI PMC
Miller B., Silverstein A., Flores M., Cao K., Kumagai H., Mehta H.H., Yen K., Kim S.J., Cohen P. Host Mitochondrial Transcriptome Response to SARS-COV-2 in Multiple Cell Models and Clinical Samples. Sci. Rep. 2021;11:3. doi: 10.1038/s41598-020-79552-z. PubMed DOI PMC
Singh K., Chen Y.C., Hassanzadeh S., Han K., Judy J.T., Seifuddin F., Tunc I., Sack M.N., Pirooznia M. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-COV-2 Infection. Front Genet. 2021;12:599261. doi: 10.3389/fgene.2021.599261. PubMed DOI PMC
Sharma N.K., Sarode S.C. Do Compromised Mitochondria Aggravate Severity and Fatality by SARS-COV-2? Curr. Med. Res. Opin. 2022;38:911–916. doi: 10.1080/03007995.2022.2065140. PubMed DOI PMC
Santos A.F., Póvoa P., Paixão P., Mendonça A., Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID-19. Front Chem. 2021;9:685196. doi: 10.3389/fchem.2021.685196. PubMed DOI PMC
Codo A.C., Davanzo G.G., Monteiro L.B., de Souza G.F., Muraro S.P., Virgilio-da-Silva J.V., Prodonoff J.S., Carregari V.C., de Biagi Junior C.A., Crunfli O.F., et al. Elevated Glucose Levels Favor SARS-COV-2 Infection and Monocyte Response through a Hif-1α/Glycolysis-Dependent Axis. Cell Metab. 2020;32:437–446.e5. doi: 10.1016/j.cmet.2020.07.007. PubMed DOI PMC
Page-McCaw A., Ewald A.J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007;8:221–233. doi: 10.1038/nrm2125. PubMed DOI PMC
Hardy E., Fernandez-Patron C. Targeting MMP-Regulation of Inflammation to Increase Metabolic Tolerance to COVID-19 Pathologies: A Hypothesis. Biomolecules. 2021;11:390. doi: 10.3390/biom11030390. PubMed DOI PMC
Savic G., Stevanovic I., Mihajlovic D., Jurisevic M., Gajovic N., Jovanovic I., Ninkovic M. MMP-9/BDNF Ratio Predicts More Severe COVID-19 Outcomes. Int. J. Med. Sci. 2022;19:1903–1911. doi: 10.7150/ijms.75337. PubMed DOI PMC
Elkington P.T., O’Kane C.M., Friedland J.S. The paradox of matrix metalloproteinases in infectious disease. Clin. Exp. Immunol. 2005;142:12–20. doi: 10.1111/j.1365-2249.2005.02840.x. PubMed DOI PMC
Bassiouni W., Ali MA M., Schulz R. Multifunctional Intracellular Matrix Metalloproteinases: Implications in Disease. FEBS J. 2021;288:7162–7182. doi: 10.1111/febs.15701. PubMed DOI
Kowluru A.R., Zhong Q., Santos J.M. Matrix metalloproteinases in diabetic retinopathy: Potential role of MMP-9. Expert Opin. Investig. Drugs. 2012;21:797–805. doi: 10.1517/13543784.2012.681043. PubMed DOI PMC
Santos J.M., Tewari S., Lin J.Y., Kowluru R.A. Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy. Biochem. Biophys. Res. Commun. 2013;438:760–764. doi: 10.1016/j.bbrc.2013.07.066. PubMed DOI PMC
Brás L.E.D.C., Cates C.A., DeLeon-Pennell K.Y., Ma Y., Iyer R.P., Halade G.V., Yabluchanskiy A., Fields G.B., Weintraub S.T., Lindsey M.L. Citrate Synthase Is a Novel in vivo matrix Metalloproteinase-9 substrate that Regulates Mitochondrial Function in the Postmyocardial Infarction Left Ventricle. Antioxidants Redox Signal. 2014;21:1974–1985. doi: 10.1089/ars.2013.5411. PubMed DOI PMC
Harris P.A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010. PubMed DOI PMC
Harris P.A., Taylor R., Minor B.L., Elliott V., Fernandez M., O’Neal L., McLeod L., Delacqua G., Delacqua F., Kirby J., et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208. PubMed DOI PMC
Liberzon A., Subramanian A., Pinchback R., Thorvaldsdóttir H., Tamayo P., Mesirov J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–1740. doi: 10.1093/bioinformatics/btr260. PubMed DOI PMC
Chew T., Sadsad R. Rnaseq-De (Version 1.0) [Computer Software] 2022. [(accessed on 1 February 2022)]. Available online: DOI
Bushnell B. Bbmap: A Fast, Accurate, Splice-Aware Aligner. Lawrence Berkeley National Lab; Berkeley, CA, USA: 2014.
Andrews S. Fastqc: A Quality Control Tool for High Throughput Sequence Data. Baraham Bioinformatics; Babraham, Cambridge, UK: 2010.
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Anders S., Pyl P.T., Huber W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
Durinck S., Moreau Y., Kasprzyk A., Davis S., De Moor B., Brazma A., Huber W. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–3440. doi: 10.1093/bioinformatics/bti525. PubMed DOI
Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-SEQ Data with DESEQ2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Ritchie M.E., Silver J., Oshlack A., Holmes M., Diyagama D., Holloway A., Smyth G.K. A comparison of background correction methods for two-colour microarrays. Bioinformatics. 2007;23:2700–2707. doi: 10.1093/bioinformatics/btm412. PubMed DOI
Smyth G.K. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat. Appl. Genet. Mol. Biol. 2004;3:1027. doi: 10.2202/1544-6115.1027. PubMed DOI
Blighe K., Rana S., Lewis M. Enhancedvolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. [(accessed on 1 February 2022)]. Available online: http://bioconductor.riken.jp/packages/3.11/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html.
R Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2022. [(accessed on 23 June 2022)]. Available online: https://www.R-project.org/
Finotello F., Mayer C., Plattner C., Laschober G., Rieder D., Hackl H., Krogsdam A., Loncova Z., Posch W., Wilflingseder D., et al. Molecular and Pharmacological Modulators of the Tumor Immune Contexture Revealed by Deconvolution of Rna-Seq Data. Genome Med. 2019;11:34. doi: 10.1186/s13073-019-0638-6. PubMed DOI PMC
Becht E., Giraldo N.A., Lacroix L., Buttard B., Elarouci N., Petitprez F., Selves J., Laurent-Puig P., Sautès-Fridman C., Fridman W.H., et al. Estimating The population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression. Genome Biol. 2016;17:218. doi: 10.1186/s13059-016-1070-5. PubMed DOI PMC
Yu G., Wang L.G., Han Y., He Q.Y. Clusterprofiler: An R Package for Comparing Biological Themes among Gene Clusters. Omics. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC