Formamidinium Lead Iodide Perovskite Thin Films Formed by Two-Step Sequential Method: Solvent-Morphology Relationship
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-15498J
Czech Science Foundation
NRF-2019K2A9A1A06071525
National Research Foundation of Korea
PubMed
36770056
PubMed Central
PMC9919648
DOI
10.3390/ma16031049
PII: ma16031049
Knihovny.cz E-zdroje
- Klíčová slova
- SEM, XRD, formamidinium lead iodide, morphology, perovskite, photophysics,
- Publikační typ
- časopisecké články MeSH
Thin films made of formamidinium lead iodide (FAPbI3) perovskites prepared by a two-step sequential deposition method using various solvents for formamidinium iodide (FAI) - isopropanol, n-butanol and tert-butanol, were studied with the aim of finding a correlation between morphology and solvent properties to improve film quality. They were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and their photophysical properties were studied by means of absorption and photoluminescence (PL) spectroscopies. XRD patterns, absorption and PL spectra proved α-phase formation for all selected solvents. An excessive amount of PbI2 found in perovskite films prepared with n-butanol indicates incomplete conversion. Thin film morphology, such as grain and crystallite size, depended on the solvent. Using tert-butanol, thin films with a very large grain size of up to several micrometers and with preferred crystallite orientation were fabricated. The grain size increased as follows: 0.2-0.5, 0.2-1 and 2-5 µm for isopropanol, n-butanol and tert-butanol, respectively. A correlation between the grain size and viscosity, electric permittivity and polarizability of the solvent could be considered. Our results, including fabrication of perovskite films with large grains and fewer grain boundaries, are important and of interest for many optoelectronic applications.
Department of Chemistry Hanyang University Seoul 04763 Republic of Korea
Institute of Nano Science and Technology Hanyang University Seoul 04763 Republic of Korea
Research Institute for Natural Sciences Hanyang University Seoul 04763 Republic of Korea
Zobrazit více v PubMed
Jena A.K., Kulkarni A., Miyasaka T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019;119:3036–3103. doi: 10.1021/acs.chemrev.8b00539. PubMed DOI
Li D.Y., Zhang D.Y., Lim K.S., Hu Y., Rong Y.G., Mei A.Y., Park N.G., Han H.W. A Review on Scaling Up Perovskite Solar Cells. Adv. Funct. Mater. 2021;31:2008621. doi: 10.1002/adfm.202008621. DOI
Zhang X.W., Shen L.N., Baral P., Vijayaraghavan S.N., Yan F., Gong X., Wang H. Blade-coated inverted perovskite solar cells in an ambient environment. Sol. Energy Mater. Sol. Cells. 2022;246:111894. doi: 10.1016/j.solmat.2022.111894. DOI
Yan J., Savenije T.J., Mazzarella L., Isabella O. Progress and challenges on scaling up of perovskite solar cell technology. Sustain. Energy Fuels. 2022;6:243–266. doi: 10.1039/D1SE01045J. DOI
Roy P., Ghosh A., Barclay F., Khare A., Cuce E. Perovskite Solar Cells: A Review of the Recent Advances. Coatings. 2022;12:1089. doi: 10.3390/coatings12081089. DOI
Guo Z., Jena A.K., Kim G.M., Miyasaka T. The high open-circuit voltage of perovskite solar cells: A review. Energy Environ. Sci. 2022;15:3171–3222. doi: 10.1039/D2EE00663D. DOI
Zhang H., Ji X., Yao H., Fan Q., Yu B., Li J. Review on efficiency improvement effort of perovskite solar cell. Sol. Energy. 2022;233:421–434. doi: 10.1016/j.solener.2022.01.060. DOI
Zhao X.F., Ng J.D.A., Friend R.H., Tan Z.K. Opportunities and Challenges in Perovskite Light-Emitting Devices. Acs Photonics. 2018;5:3866–3875. doi: 10.1021/acsphotonics.8b00745. DOI
Hassan Y., Park J.H., Crawford M.L., Sadhanala A., Lee J., Sadighian J.C., Mosconi E., Shivanna R., Radicchi E., Jeong M., et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature. 2021;591:72–77. doi: 10.1038/s41586-021-03217-8. PubMed DOI
Kim Y.-H., Kim S., Kakekhani A., Park J., Park J., Lee Y.-H., Xu H., Nagane S., Wexler R.B., Kim D.-H., et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics. 2021;15:148–155. doi: 10.1038/s41566-020-00732-4. DOI
Yang D., Zhao B., Yang T., Lai R., Lan D., Friend R.H., Di D. Toward Stable and Efficient Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2022;32:2109495. doi: 10.1002/adfm.202109495. DOI
Miao J.L., Zhang F.J. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C. 2019;7:1741–1791. doi: 10.1039/C8TC06089D. DOI
Zhou J., Huang J. Photodetectors Based on Organic-Inorganic Hybrid Lead Halide Perovskites. Adv. Sci. 2018;5:1700256. doi: 10.1002/advs.201700256. PubMed DOI PMC
Wang T., Lian G., Huang L., Zhu F., Cui D., Wang Q., Meng Q., Jiang H., Zhou G., Wong C.-P. A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent Vis-NIR photodetectors. Nano Energy. 2019;64:103914. doi: 10.1016/j.nanoen.2019.103914. DOI
Wang T., Zheng D.M., Zhang J.K., Qiao J., Min C.J., Yuan X.C., Somekh M., Feng F. High-Performance and Stable Plasmonic-Functionalized Formamidinium-Based Quasi-2D Perovskite Photodetector for Potential Application in Optical Communication. Adv. Funct. Mater. 2022;32:2208694. doi: 10.1002/adfm.202208694. DOI
Kim J.Y., Lee J.W., Jung H.S., Shin H., Park N.G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020;120:7867–7918. doi: 10.1021/acs.chemrev.0c00107. PubMed DOI
Chen W., Zhang F., Wang C., Jia M., Zhao X., Liu Z., Ge Y., Zhang Y., Zhang H. Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges. Adv. Mater. 2021;33:e2004446. doi: 10.1002/adma.202004446. PubMed DOI
Zhumekenov A.A., Saidaminov M.I., Mohammed O.F., Bakr O.M. Stimuli-responsive switchable halide perovskites: Taking advantage of instability. Joule. 2021;5:2027–2046. doi: 10.1016/j.joule.2021.07.008. DOI
Syrrokostas G., Dokouzis A., Yannopoulos S.N., Leftheriotis G. Novel photoelectrochromic devices incorporating carbon-based perovskite solar cells. Nano Energy. 2020;77:105243. doi: 10.1016/j.nanoen.2020.105243. DOI
Jiang F., Lee P.S. Performance optimization strategies of halide perovskite-based mechanical energy harvesters. Nanoscale Horiz. 2022;7:1029–1046. doi: 10.1039/D2NH00229A. PubMed DOI
Minh D.N., Nguyen L.A.T., Trinh C.T., Oh C., Eom S., Vu T.V., Choi J., Sim J.H., Lee K.-G., Kim J., et al. Low-Dimensional Single-Cation Formamidinium Lead Halide Perovskites (FAm+2PbmBr3m+2): From Synthesis to Rewritable Phase-Change Memory Film. Adv. Funct. Mater. 2021;31:2011093. doi: 10.1002/adfm.202011093. DOI
Shamsi J., Urban A.S., Imran M., De Trizio L., Manna L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019;119:3296–3348. doi: 10.1021/acs.chemrev.8b00644. PubMed DOI PMC
Hu S., Xiang C.H., Yan P.Y., Zhang Y., Li H., Sheng C.X. Highly efficient inverted planar solar cell using formamidinium-based quasi-two dimensional perovskites. J. Alloy. Compd. 2022;921:166139. doi: 10.1016/j.jallcom.2022.166139. DOI
Jeon N.J., Noh J.H., Yang W.S., Kim Y.C., Ryu S., Seo J., Seok S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015;517:476–480. doi: 10.1038/nature14133. PubMed DOI
Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013;52:9019–9038. doi: 10.1021/ic401215x. PubMed DOI
Xing G., Mathews N., Sun S., Lim S.S., Lam Y.M., Gratzel M., Mhaisalkar S., Sum T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. 2013;342:344–347. doi: 10.1126/science.1243167. PubMed DOI
Eperon G.E., Stranks S.D., Menelaou C., Johnston M.B., Herz L.M., Snaith H.J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014;7:982–988. doi: 10.1039/c3ee43822h. DOI
Masi S., Gualdrón-Reyes A.F., Mora-Seró I. Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3. Acs Energy Lett. 2020;5:1974–1985. doi: 10.1021/acsenergylett.0c00801. DOI
Fabini D.H., Stoumpos C.C., Laurita G., Kaltzoglou A., Kontos A.G., Falaras P., Kanatzidis M.G., Seshadri R. Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. Angew. Chem. Int. Ed. 2016;55:15392–15396. doi: 10.1002/anie.201609538. PubMed DOI
Zheng Z., Wang S., Hu Y., Rong Y., Mei A., Han H. Development of formamidinium lead iodide-based perovskite solar cells: Efficiency and stability. Chem. Sci. 2022;13:2167–2183. doi: 10.1039/D1SC04769H. PubMed DOI PMC
Sajid S., Khan S., Khan A., Khan D., Issakhov A., Park J. Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells. Sol. Energy. 2021;225:1001–1008. doi: 10.1016/j.solener.2021.08.015. DOI
Chen S., Xiao X., Chen B., Kelly L.L., Zhao J., Lin Y., Toney M.F., Huang J. Crystallization in one-step solution deposition of perovskite films: Upward or downward? Sci. Adv. 2021;7:eabb2412. doi: 10.1126/sciadv.abb2412. PubMed DOI
Burschka J., Pellet N., Moon S.-J., Humphry-Baker R., Gao P., Nazeeruddin M.K., Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499:316–319. doi: 10.1038/nature12340. PubMed DOI
Hu L., Peng J., Wang W.W., Xia Z., Yuan J.Y., Lu J.L., Huang X.D., Ma W.L., Song H.B., Chen W., et al. Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells. ACS Photonics. 2014;1:547–553. doi: 10.1021/ph5000067. DOI
Xiao Z.G., Bi C., Shao Y.C., Dong Q.F., Wang Q., Yuan Y.B., Wang C.G., Gao Y.L., Huang J.S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014;7:2619–2623. doi: 10.1039/C4EE01138D. DOI
Lee J.W., Park N.G. Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 2015;40:654–659. doi: 10.1557/mrs.2015.166. DOI
Sajid S., Alzahmi S., Salem I.B., Obaidat I.M. Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells. Nanomaterials. 2022;12:3352. doi: 10.3390/nano12193352. PubMed DOI PMC
Chauhan M., Zhong Y., Schötz K., Tripathi B., Köhler A., Huettner S., Panzer F. Investigating two-step MAPbI3 thin film formation during spin coating by simultaneous in situ absorption and photoluminescence spectroscopy. J. Mater. Chem. A. 2020;8:5086–5094. doi: 10.1039/C9TA12409H. DOI
Han Y.P., Xie H.B., Lim E.L., Bi D.Q. Review of Two-Step Method for Lead Halide Perovskite Solar Cells. Sol. RRL. 2022;6:2101007. doi: 10.1002/solr.202101007. DOI
Dubey A., Adhikari N., Mabrouk S., Wu F., Chen K., Yang S.F., Qiao Q.Q. A strategic review on processing routes towards highly efficient perovskite solar cells. J. Mater. Chem. A. 2018;6:2406–2431. doi: 10.1039/C7TA08277K. DOI
Jung M., Ji S.-G., Kim G., Seok S.I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019;48:2011–2038. doi: 10.1039/C8CS00656C. PubMed DOI
Taylor A.D., Sun Q., Goetz K.P., An Q., Schramm T., Hofstetter Y., Litterst M., Paulus F., Vaynzof Y. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 2021;12:1878. doi: 10.1038/s41467-021-22049-8. PubMed DOI PMC
Fu X., Dong N., Lian G., Lv S., Zhao T., Wang Q., Cui D., Wong C.P. High-Quality CH(3)NH(3)PbI(3) Films Obtained via a Pressure-Assisted Space-Confined Solvent-Engineering Strategy for Ultrasensitive Photodetectors. Nano Lett. 2018;18:1213–1220. doi: 10.1021/acs.nanolett.7b04809. PubMed DOI
Rong Y., Tang Z., Zhao Y., Zhong X., Venkatesan S., Graham H., Patton M., Jing Y., Guloy A.M., Yao Y. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale. 2015;7:10595–10599. doi: 10.1039/C5NR02866C. PubMed DOI
Ghosh S., Mishra S., Singh T. Antisolvents in Perovskite Solar Cells: Importance, Issues, and Alternatives. Adv. Mater. Interfaces. 2020;7:2000950. doi: 10.1002/admi.202000950. DOI
Liu R.Z., Xu K. Solvent engineering for perovskite solar cells: A review. Micro Nano Lett. 2020;15:349–353. doi: 10.1049/mnl.2019.0735. DOI
Wang L., Liu G.L., Xi X., Yang G.F., Hu L.F., Zhu B.J., He Y.F., Liu Y.S., Qian H.Q., Zhang S.D., et al. Annealing Engineering in the Growth of Perovskite Grains. Crystals. 2022;12:894. doi: 10.3390/cryst12070894. DOI
Wang M.H., Feng Y.L., Bian J.M., Liu H.Z., Shi Y.T. A comparative study of one-step and two-step approaches for MAPbI(3) perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chem. Phys. Lett. 2018;692:44–49. doi: 10.1016/j.cplett.2017.12.012. DOI
Mou J.P., Song J., Che M., Liu Y., Qin Y.S., Liu H.M., Zhu L., Zhao Y.L., Qiang Y.H. Butanol-assisted solvent annealing of CH3NH3PbI3 film for high-efficient perovskite solar cells. J. Mater. Sci. Mater. Electron. 2019;30:746–752. doi: 10.1007/s10854-018-0343-z. DOI
Wang F., Yu H., Xu H.H., Zhao N. HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells. Adv. Funct. Mater. 2015;25:1120–1126. doi: 10.1002/adfm.201404007. DOI
Bag M., Renna L.A., Adhikari R.Y., Karak S., Liu F., Lahti P.M., Russell T.P., Tuominen M.T., Venkataraman D. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. J. Am. Chem. Soc. 2015;137:13130–13137. doi: 10.1021/jacs.5b08535. PubMed DOI
Weber O.J., Charles B., Weller M.T. Phase behaviour and composition in the formamidinium-methylammonium hybrid lead iodide perovskite solid solution. J. Mater. Chem. A. 2016;4:15375–15382. doi: 10.1039/C6TA06607K. DOI
Yang W.S., Park B.W., Jung E.H., Jeon N.J., Kim Y.C., Lee D.U., Shin S.S., Seo J., Kim E.K., Noh J.H., et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 2017;356:1376–1379. doi: 10.1126/science.aan2301. PubMed DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Koh T.M., Fu K.W., Fang Y.N., Chen S., Sum T.C., Mathews N., Mhaisalkar S.G., Boix P.P., Baikie T. Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C. 2014;118:16458–16462. doi: 10.1021/jp411112k. DOI
Binek A., Hanusch F.C., Docampo P., Bein T. Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. J. Phys. Chem. Lett. 2015;6:1249–1253. doi: 10.1021/acs.jpclett.5b00380. PubMed DOI
Han Q., Bae S.H., Sun P., Hsieh Y.T., Yang Y.M., Rim Y.S., Zhao H., Chen Q., Shi W., Li G., et al. Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties. Adv. Mater. 2016;28:2253–2258. doi: 10.1002/adma.201505002. PubMed DOI
Yang S.D., Liu W.Q., Zuo L.J., Zhang X.Q., Ye T., Chen J.H., Li C.Z., Wu G., Chen H.Z. Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. J. Mater. Chem. A. 2016;4:9430–9436. doi: 10.1039/C6TA02999J. DOI
Zhang M., Zhang F., Wang Y., Zhu L., Hu Y., Lou Z., Hou Y., Teng F. High-Performance Photodiode-Type Photodetectors Based on Polycrystalline Formamidinium Lead Iodide Perovskite Thin Films. Sci. Rep. 2018;8:11157. doi: 10.1038/s41598-018-29147-6. PubMed DOI PMC
Weller M.T., Weber O.J., Frost J.M., Walsh A. Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 2015;6:3209–3212. doi: 10.1021/acs.jpclett.5b01432. DOI
Chen H., Chen Y., Zhang T., Liu X., Wang X., Zhao Y. Advances to High-Performance Black-Phase FAPbI3 Perovskite for Efficient and Stable Photovoltaics. Small Struct. 2021;2:2000130. doi: 10.1002/sstr.202000130. DOI
Saidaminov M.I., Abdelhady A.L., Maculan G., Bakr O.M. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem. Commun. 2015;51:17658–17661. doi: 10.1039/C5CC06916E. PubMed DOI
Zhumekenov A.A., Saidaminov M.I., Haque M.A., Alarousu E., Sarmah S.P., Murali B., Dursun I., Miao X.H., Abdelhady A.L., Wu T., et al. Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. ACS Energy Lett. 2016;1:32–37. doi: 10.1021/acsenergylett.6b00002. DOI
Liu Y.C., Sun J.K., Yang Z., Yang D., Ren X.D., Xu H., Yang Z.P., Liu S.Z. 20-mm-Large Single-Crystalline Formamidinium-Perovskite Wafer for Mass Production of Integrated Photodetectors. Adv. Opt. Mater. 2016;4:1829–1837. doi: 10.1002/adom.201600327. DOI
Sekimoto T., Suzuka M., Yokoyama T., Uchida R., Machida S., Sekiguchi T., Kawano K. Energy level diagram of HC(NH(2))(2)PbI(3) single crystal evaluated by electrical and optical analyses. Phys. Chem. Chem. Phys. 2018;20:1373–1380. doi: 10.1039/C7CP07477H. PubMed DOI
Murugadoss G., Thangamuthu R., Kumar M.R. Formamidinium lead iodide perovskite: Structure, shape and optical tuning via hydrothermal method. Mater. Lett. 2018;231:16–19. doi: 10.1016/j.matlet.2018.08.003. DOI
Murugadoss G., Kuppusami P., Kumar M.R. Solvent effect on structure and morphology of formamidinium lead tri-iodide perovskite via hydrothermal method. Inorg. Chem. Commun. 2020;119:108059. doi: 10.1016/j.inoche.2020.108059. DOI
Murugadoss G., Arunachalam P., Panda S.K., Rajesh Kumar M., Rajabathar J.R., Al-Lohedan H., Wasmiah M.D. Crystal stabilization of α-FAPbI3 perovskite by rapid annealing method in industrial scale. J. Mater. Res. Technol. 2021;12:1924–1930. doi: 10.1016/j.jmrt.2021.03.107. DOI
Kato M., Fujiseki T., Miyadera T., Sugita T., Fujimoto S., Tamakoshi M., Chikamatsu M., Fujiwara H. Universal rules for visible-light absorption in hybrid perovskite materials. J. Appl. Phys. 2017;121:115501. doi: 10.1063/1.4978071. DOI
Harrington G.F., Santiso J. Back-to-Basics tutorial: X-ray diffraction of thin films. J. Electroceram. 2021;47:141–163. doi: 10.1007/s10832-021-00263-6. DOI
Pandey A., Dalal S., Dutta S., Dixit A. Structural characterization of polycrystalline thin films by X-ray diffraction techniques. J. Mater. Sci. Mater. Electron. 2021;32:1341–1368. doi: 10.1007/s10854-020-04998-w. DOI
Hossain M.K., Yamamoto T., Hashizume K. Effect of sintering conditions on structural and morphological properties of Y- and Co-doped BaZrO3 proton conductors. Ceram. Int. 2021;47:27177–27187. doi: 10.1016/j.ceramint.2021.06.138. DOI
Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 1918;2:98–100.
Langford J.I., Wilson A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 1978;11:102–113. doi: 10.1107/S0021889878012844. DOI
Bosque R., Sales J. Polarizabilities of Solvents from the Chemical Composition. J. Chem. Inf. Comput. Sci. 2002;42:1154–1163. doi: 10.1021/ci025528x. PubMed DOI
Lee J.W., Seol D.J., Cho A.N., Park N.G. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3. Adv. Mater. 2014;26:4991–4998. doi: 10.1002/adma.201401137. PubMed DOI
Aharon S., Dymshits A., Rotem A., Etgar L. Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J. Mater. Chem. A. 2015;3:9171–9178. doi: 10.1039/C4TA05149A. DOI
El-Ghtami H., Laref A., Laref S. Electronic and optical behaviors of methylammonium and formamidinium lead trihalide perovskite materials. J. Mater. Sci. Mater. Electron. 2019;30:711–720. doi: 10.1007/s10854-018-0340-2. DOI
Pachori S., Kumari S., Verma A.S. An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite. J. Mater. Sci. Mater. Electron. 2020;31:18004–18017.