Formamidinium Lead Iodide Perovskite Thin Films Formed by Two-Step Sequential Method: Solvent-Morphology Relationship

. 2023 Jan 25 ; 16 (3) : . [epub] 20230125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36770056

Grantová podpora
20-15498J Czech Science Foundation
NRF-2019K2A9A1A06071525 National Research Foundation of Korea

Thin films made of formamidinium lead iodide (FAPbI3) perovskites prepared by a two-step sequential deposition method using various solvents for formamidinium iodide (FAI) - isopropanol, n-butanol and tert-butanol, were studied with the aim of finding a correlation between morphology and solvent properties to improve film quality. They were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and their photophysical properties were studied by means of absorption and photoluminescence (PL) spectroscopies. XRD patterns, absorption and PL spectra proved α-phase formation for all selected solvents. An excessive amount of PbI2 found in perovskite films prepared with n-butanol indicates incomplete conversion. Thin film morphology, such as grain and crystallite size, depended on the solvent. Using tert-butanol, thin films with a very large grain size of up to several micrometers and with preferred crystallite orientation were fabricated. The grain size increased as follows: 0.2-0.5, 0.2-1 and 2-5 µm for isopropanol, n-butanol and tert-butanol, respectively. A correlation between the grain size and viscosity, electric permittivity and polarizability of the solvent could be considered. Our results, including fabrication of perovskite films with large grains and fewer grain boundaries, are important and of interest for many optoelectronic applications.

Zobrazit více v PubMed

Jena A.K., Kulkarni A., Miyasaka T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019;119:3036–3103. doi: 10.1021/acs.chemrev.8b00539. PubMed DOI

Li D.Y., Zhang D.Y., Lim K.S., Hu Y., Rong Y.G., Mei A.Y., Park N.G., Han H.W. A Review on Scaling Up Perovskite Solar Cells. Adv. Funct. Mater. 2021;31:2008621. doi: 10.1002/adfm.202008621. DOI

Zhang X.W., Shen L.N., Baral P., Vijayaraghavan S.N., Yan F., Gong X., Wang H. Blade-coated inverted perovskite solar cells in an ambient environment. Sol. Energy Mater. Sol. Cells. 2022;246:111894. doi: 10.1016/j.solmat.2022.111894. DOI

Yan J., Savenije T.J., Mazzarella L., Isabella O. Progress and challenges on scaling up of perovskite solar cell technology. Sustain. Energy Fuels. 2022;6:243–266. doi: 10.1039/D1SE01045J. DOI

Roy P., Ghosh A., Barclay F., Khare A., Cuce E. Perovskite Solar Cells: A Review of the Recent Advances. Coatings. 2022;12:1089. doi: 10.3390/coatings12081089. DOI

Guo Z., Jena A.K., Kim G.M., Miyasaka T. The high open-circuit voltage of perovskite solar cells: A review. Energy Environ. Sci. 2022;15:3171–3222. doi: 10.1039/D2EE00663D. DOI

Zhang H., Ji X., Yao H., Fan Q., Yu B., Li J. Review on efficiency improvement effort of perovskite solar cell. Sol. Energy. 2022;233:421–434. doi: 10.1016/j.solener.2022.01.060. DOI

Zhao X.F., Ng J.D.A., Friend R.H., Tan Z.K. Opportunities and Challenges in Perovskite Light-Emitting Devices. Acs Photonics. 2018;5:3866–3875. doi: 10.1021/acsphotonics.8b00745. DOI

Hassan Y., Park J.H., Crawford M.L., Sadhanala A., Lee J., Sadighian J.C., Mosconi E., Shivanna R., Radicchi E., Jeong M., et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature. 2021;591:72–77. doi: 10.1038/s41586-021-03217-8. PubMed DOI

Kim Y.-H., Kim S., Kakekhani A., Park J., Park J., Lee Y.-H., Xu H., Nagane S., Wexler R.B., Kim D.-H., et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics. 2021;15:148–155. doi: 10.1038/s41566-020-00732-4. DOI

Yang D., Zhao B., Yang T., Lai R., Lan D., Friend R.H., Di D. Toward Stable and Efficient Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2022;32:2109495. doi: 10.1002/adfm.202109495. DOI

Miao J.L., Zhang F.J. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C. 2019;7:1741–1791. doi: 10.1039/C8TC06089D. DOI

Zhou J., Huang J. Photodetectors Based on Organic-Inorganic Hybrid Lead Halide Perovskites. Adv. Sci. 2018;5:1700256. doi: 10.1002/advs.201700256. PubMed DOI PMC

Wang T., Lian G., Huang L., Zhu F., Cui D., Wang Q., Meng Q., Jiang H., Zhou G., Wong C.-P. A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent Vis-NIR photodetectors. Nano Energy. 2019;64:103914. doi: 10.1016/j.nanoen.2019.103914. DOI

Wang T., Zheng D.M., Zhang J.K., Qiao J., Min C.J., Yuan X.C., Somekh M., Feng F. High-Performance and Stable Plasmonic-Functionalized Formamidinium-Based Quasi-2D Perovskite Photodetector for Potential Application in Optical Communication. Adv. Funct. Mater. 2022;32:2208694. doi: 10.1002/adfm.202208694. DOI

Kim J.Y., Lee J.W., Jung H.S., Shin H., Park N.G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020;120:7867–7918. doi: 10.1021/acs.chemrev.0c00107. PubMed DOI

Chen W., Zhang F., Wang C., Jia M., Zhao X., Liu Z., Ge Y., Zhang Y., Zhang H. Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges. Adv. Mater. 2021;33:e2004446. doi: 10.1002/adma.202004446. PubMed DOI

Zhumekenov A.A., Saidaminov M.I., Mohammed O.F., Bakr O.M. Stimuli-responsive switchable halide perovskites: Taking advantage of instability. Joule. 2021;5:2027–2046. doi: 10.1016/j.joule.2021.07.008. DOI

Syrrokostas G., Dokouzis A., Yannopoulos S.N., Leftheriotis G. Novel photoelectrochromic devices incorporating carbon-based perovskite solar cells. Nano Energy. 2020;77:105243. doi: 10.1016/j.nanoen.2020.105243. DOI

Jiang F., Lee P.S. Performance optimization strategies of halide perovskite-based mechanical energy harvesters. Nanoscale Horiz. 2022;7:1029–1046. doi: 10.1039/D2NH00229A. PubMed DOI

Minh D.N., Nguyen L.A.T., Trinh C.T., Oh C., Eom S., Vu T.V., Choi J., Sim J.H., Lee K.-G., Kim J., et al. Low-Dimensional Single-Cation Formamidinium Lead Halide Perovskites (FAm+2PbmBr3m+2): From Synthesis to Rewritable Phase-Change Memory Film. Adv. Funct. Mater. 2021;31:2011093. doi: 10.1002/adfm.202011093. DOI

Shamsi J., Urban A.S., Imran M., De Trizio L., Manna L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019;119:3296–3348. doi: 10.1021/acs.chemrev.8b00644. PubMed DOI PMC

Hu S., Xiang C.H., Yan P.Y., Zhang Y., Li H., Sheng C.X. Highly efficient inverted planar solar cell using formamidinium-based quasi-two dimensional perovskites. J. Alloy. Compd. 2022;921:166139. doi: 10.1016/j.jallcom.2022.166139. DOI

Jeon N.J., Noh J.H., Yang W.S., Kim Y.C., Ryu S., Seo J., Seok S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015;517:476–480. doi: 10.1038/nature14133. PubMed DOI

Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013;52:9019–9038. doi: 10.1021/ic401215x. PubMed DOI

Xing G., Mathews N., Sun S., Lim S.S., Lam Y.M., Gratzel M., Mhaisalkar S., Sum T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. 2013;342:344–347. doi: 10.1126/science.1243167. PubMed DOI

Eperon G.E., Stranks S.D., Menelaou C., Johnston M.B., Herz L.M., Snaith H.J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014;7:982–988. doi: 10.1039/c3ee43822h. DOI

Masi S., Gualdrón-Reyes A.F., Mora-Seró I. Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3. Acs Energy Lett. 2020;5:1974–1985. doi: 10.1021/acsenergylett.0c00801. DOI

Fabini D.H., Stoumpos C.C., Laurita G., Kaltzoglou A., Kontos A.G., Falaras P., Kanatzidis M.G., Seshadri R. Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. Angew. Chem. Int. Ed. 2016;55:15392–15396. doi: 10.1002/anie.201609538. PubMed DOI

Zheng Z., Wang S., Hu Y., Rong Y., Mei A., Han H. Development of formamidinium lead iodide-based perovskite solar cells: Efficiency and stability. Chem. Sci. 2022;13:2167–2183. doi: 10.1039/D1SC04769H. PubMed DOI PMC

Sajid S., Khan S., Khan A., Khan D., Issakhov A., Park J. Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells. Sol. Energy. 2021;225:1001–1008. doi: 10.1016/j.solener.2021.08.015. DOI

Chen S., Xiao X., Chen B., Kelly L.L., Zhao J., Lin Y., Toney M.F., Huang J. Crystallization in one-step solution deposition of perovskite films: Upward or downward? Sci. Adv. 2021;7:eabb2412. doi: 10.1126/sciadv.abb2412. PubMed DOI

Burschka J., Pellet N., Moon S.-J., Humphry-Baker R., Gao P., Nazeeruddin M.K., Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499:316–319. doi: 10.1038/nature12340. PubMed DOI

Hu L., Peng J., Wang W.W., Xia Z., Yuan J.Y., Lu J.L., Huang X.D., Ma W.L., Song H.B., Chen W., et al. Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells. ACS Photonics. 2014;1:547–553. doi: 10.1021/ph5000067. DOI

Xiao Z.G., Bi C., Shao Y.C., Dong Q.F., Wang Q., Yuan Y.B., Wang C.G., Gao Y.L., Huang J.S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014;7:2619–2623. doi: 10.1039/C4EE01138D. DOI

Lee J.W., Park N.G. Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 2015;40:654–659. doi: 10.1557/mrs.2015.166. DOI

Sajid S., Alzahmi S., Salem I.B., Obaidat I.M. Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells. Nanomaterials. 2022;12:3352. doi: 10.3390/nano12193352. PubMed DOI PMC

Chauhan M., Zhong Y., Schötz K., Tripathi B., Köhler A., Huettner S., Panzer F. Investigating two-step MAPbI3 thin film formation during spin coating by simultaneous in situ absorption and photoluminescence spectroscopy. J. Mater. Chem. A. 2020;8:5086–5094. doi: 10.1039/C9TA12409H. DOI

Han Y.P., Xie H.B., Lim E.L., Bi D.Q. Review of Two-Step Method for Lead Halide Perovskite Solar Cells. Sol. RRL. 2022;6:2101007. doi: 10.1002/solr.202101007. DOI

Dubey A., Adhikari N., Mabrouk S., Wu F., Chen K., Yang S.F., Qiao Q.Q. A strategic review on processing routes towards highly efficient perovskite solar cells. J. Mater. Chem. A. 2018;6:2406–2431. doi: 10.1039/C7TA08277K. DOI

Jung M., Ji S.-G., Kim G., Seok S.I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019;48:2011–2038. doi: 10.1039/C8CS00656C. PubMed DOI

Taylor A.D., Sun Q., Goetz K.P., An Q., Schramm T., Hofstetter Y., Litterst M., Paulus F., Vaynzof Y. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 2021;12:1878. doi: 10.1038/s41467-021-22049-8. PubMed DOI PMC

Fu X., Dong N., Lian G., Lv S., Zhao T., Wang Q., Cui D., Wong C.P. High-Quality CH(3)NH(3)PbI(3) Films Obtained via a Pressure-Assisted Space-Confined Solvent-Engineering Strategy for Ultrasensitive Photodetectors. Nano Lett. 2018;18:1213–1220. doi: 10.1021/acs.nanolett.7b04809. PubMed DOI

Rong Y., Tang Z., Zhao Y., Zhong X., Venkatesan S., Graham H., Patton M., Jing Y., Guloy A.M., Yao Y. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale. 2015;7:10595–10599. doi: 10.1039/C5NR02866C. PubMed DOI

Ghosh S., Mishra S., Singh T. Antisolvents in Perovskite Solar Cells: Importance, Issues, and Alternatives. Adv. Mater. Interfaces. 2020;7:2000950. doi: 10.1002/admi.202000950. DOI

Liu R.Z., Xu K. Solvent engineering for perovskite solar cells: A review. Micro Nano Lett. 2020;15:349–353. doi: 10.1049/mnl.2019.0735. DOI

Wang L., Liu G.L., Xi X., Yang G.F., Hu L.F., Zhu B.J., He Y.F., Liu Y.S., Qian H.Q., Zhang S.D., et al. Annealing Engineering in the Growth of Perovskite Grains. Crystals. 2022;12:894. doi: 10.3390/cryst12070894. DOI

Wang M.H., Feng Y.L., Bian J.M., Liu H.Z., Shi Y.T. A comparative study of one-step and two-step approaches for MAPbI(3) perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chem. Phys. Lett. 2018;692:44–49. doi: 10.1016/j.cplett.2017.12.012. DOI

Mou J.P., Song J., Che M., Liu Y., Qin Y.S., Liu H.M., Zhu L., Zhao Y.L., Qiang Y.H. Butanol-assisted solvent annealing of CH3NH3PbI3 film for high-efficient perovskite solar cells. J. Mater. Sci. Mater. Electron. 2019;30:746–752. doi: 10.1007/s10854-018-0343-z. DOI

Wang F., Yu H., Xu H.H., Zhao N. HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells. Adv. Funct. Mater. 2015;25:1120–1126. doi: 10.1002/adfm.201404007. DOI

Bag M., Renna L.A., Adhikari R.Y., Karak S., Liu F., Lahti P.M., Russell T.P., Tuominen M.T., Venkataraman D. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. J. Am. Chem. Soc. 2015;137:13130–13137. doi: 10.1021/jacs.5b08535. PubMed DOI

Weber O.J., Charles B., Weller M.T. Phase behaviour and composition in the formamidinium-methylammonium hybrid lead iodide perovskite solid solution. J. Mater. Chem. A. 2016;4:15375–15382. doi: 10.1039/C6TA06607K. DOI

Yang W.S., Park B.W., Jung E.H., Jeon N.J., Kim Y.C., Lee D.U., Shin S.S., Seo J., Kim E.K., Noh J.H., et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 2017;356:1376–1379. doi: 10.1126/science.aan2301. PubMed DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Koh T.M., Fu K.W., Fang Y.N., Chen S., Sum T.C., Mathews N., Mhaisalkar S.G., Boix P.P., Baikie T. Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C. 2014;118:16458–16462. doi: 10.1021/jp411112k. DOI

Binek A., Hanusch F.C., Docampo P., Bein T. Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. J. Phys. Chem. Lett. 2015;6:1249–1253. doi: 10.1021/acs.jpclett.5b00380. PubMed DOI

Han Q., Bae S.H., Sun P., Hsieh Y.T., Yang Y.M., Rim Y.S., Zhao H., Chen Q., Shi W., Li G., et al. Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties. Adv. Mater. 2016;28:2253–2258. doi: 10.1002/adma.201505002. PubMed DOI

Yang S.D., Liu W.Q., Zuo L.J., Zhang X.Q., Ye T., Chen J.H., Li C.Z., Wu G., Chen H.Z. Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. J. Mater. Chem. A. 2016;4:9430–9436. doi: 10.1039/C6TA02999J. DOI

Zhang M., Zhang F., Wang Y., Zhu L., Hu Y., Lou Z., Hou Y., Teng F. High-Performance Photodiode-Type Photodetectors Based on Polycrystalline Formamidinium Lead Iodide Perovskite Thin Films. Sci. Rep. 2018;8:11157. doi: 10.1038/s41598-018-29147-6. PubMed DOI PMC

Weller M.T., Weber O.J., Frost J.M., Walsh A. Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 2015;6:3209–3212. doi: 10.1021/acs.jpclett.5b01432. DOI

Chen H., Chen Y., Zhang T., Liu X., Wang X., Zhao Y. Advances to High-Performance Black-Phase FAPbI3 Perovskite for Efficient and Stable Photovoltaics. Small Struct. 2021;2:2000130. doi: 10.1002/sstr.202000130. DOI

Saidaminov M.I., Abdelhady A.L., Maculan G., Bakr O.M. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem. Commun. 2015;51:17658–17661. doi: 10.1039/C5CC06916E. PubMed DOI

Zhumekenov A.A., Saidaminov M.I., Haque M.A., Alarousu E., Sarmah S.P., Murali B., Dursun I., Miao X.H., Abdelhady A.L., Wu T., et al. Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. ACS Energy Lett. 2016;1:32–37. doi: 10.1021/acsenergylett.6b00002. DOI

Liu Y.C., Sun J.K., Yang Z., Yang D., Ren X.D., Xu H., Yang Z.P., Liu S.Z. 20-mm-Large Single-Crystalline Formamidinium-Perovskite Wafer for Mass Production of Integrated Photodetectors. Adv. Opt. Mater. 2016;4:1829–1837. doi: 10.1002/adom.201600327. DOI

Sekimoto T., Suzuka M., Yokoyama T., Uchida R., Machida S., Sekiguchi T., Kawano K. Energy level diagram of HC(NH(2))(2)PbI(3) single crystal evaluated by electrical and optical analyses. Phys. Chem. Chem. Phys. 2018;20:1373–1380. doi: 10.1039/C7CP07477H. PubMed DOI

Murugadoss G., Thangamuthu R., Kumar M.R. Formamidinium lead iodide perovskite: Structure, shape and optical tuning via hydrothermal method. Mater. Lett. 2018;231:16–19. doi: 10.1016/j.matlet.2018.08.003. DOI

Murugadoss G., Kuppusami P., Kumar M.R. Solvent effect on structure and morphology of formamidinium lead tri-iodide perovskite via hydrothermal method. Inorg. Chem. Commun. 2020;119:108059. doi: 10.1016/j.inoche.2020.108059. DOI

Murugadoss G., Arunachalam P., Panda S.K., Rajesh Kumar M., Rajabathar J.R., Al-Lohedan H., Wasmiah M.D. Crystal stabilization of α-FAPbI3 perovskite by rapid annealing method in industrial scale. J. Mater. Res. Technol. 2021;12:1924–1930. doi: 10.1016/j.jmrt.2021.03.107. DOI

Kato M., Fujiseki T., Miyadera T., Sugita T., Fujimoto S., Tamakoshi M., Chikamatsu M., Fujiwara H. Universal rules for visible-light absorption in hybrid perovskite materials. J. Appl. Phys. 2017;121:115501. doi: 10.1063/1.4978071. DOI

Harrington G.F., Santiso J. Back-to-Basics tutorial: X-ray diffraction of thin films. J. Electroceram. 2021;47:141–163. doi: 10.1007/s10832-021-00263-6. DOI

Pandey A., Dalal S., Dutta S., Dixit A. Structural characterization of polycrystalline thin films by X-ray diffraction techniques. J. Mater. Sci. Mater. Electron. 2021;32:1341–1368. doi: 10.1007/s10854-020-04998-w. DOI

Hossain M.K., Yamamoto T., Hashizume K. Effect of sintering conditions on structural and morphological properties of Y- and Co-doped BaZrO3 proton conductors. Ceram. Int. 2021;47:27177–27187. doi: 10.1016/j.ceramint.2021.06.138. DOI

Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 1918;2:98–100.

Langford J.I., Wilson A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 1978;11:102–113. doi: 10.1107/S0021889878012844. DOI

Bosque R., Sales J. Polarizabilities of Solvents from the Chemical Composition. J. Chem. Inf. Comput. Sci. 2002;42:1154–1163. doi: 10.1021/ci025528x. PubMed DOI

Lee J.W., Seol D.J., Cho A.N., Park N.G. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3. Adv. Mater. 2014;26:4991–4998. doi: 10.1002/adma.201401137. PubMed DOI

Aharon S., Dymshits A., Rotem A., Etgar L. Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J. Mater. Chem. A. 2015;3:9171–9178. doi: 10.1039/C4TA05149A. DOI

El-Ghtami H., Laref A., Laref S. Electronic and optical behaviors of methylammonium and formamidinium lead trihalide perovskite materials. J. Mater. Sci. Mater. Electron. 2019;30:711–720. doi: 10.1007/s10854-018-0340-2. DOI

Pachori S., Kumari S., Verma A.S. An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite. J. Mater. Sci. Mater. Electron. 2020;31:18004–18017.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...