Systematic Identification of Suitable Reference Genes for Quantitative Real-Time PCR Analysis in Melissa officinalis L
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20223101
Czech University of Life Sciences Prague
PubMed
36771553
PubMed Central
PMC9919226
DOI
10.3390/plants12030470
PII: plants12030470
Knihovny.cz E-resources
- Keywords
- abiotic stress, elicitor treatment, gene expression, lemon balm, qRT-PCR, reference genes,
- Publication type
- Journal Article MeSH
Melissa officinalis L. is well known for its lemon-scented aroma and various pharmacological properties. Despite these valuable properties, the genes involved in the biosynthetic pathways in M. officinalis are not yet well-explored when compared to other members of the mint family. For that, gene expression studies using quantitative real-time PCR (qRT-PCR) are an excellent tool. Although qRT-PCR can provide accurate results, its accuracy is highly reliant on the expression and stability of the reference gene used for normalization. Hence, selecting a suitable experiment-specific reference gene is very crucial to obtain accurate results. However, to date, there are no reports for experiment-specific reference genes in M. officinalis. Therefore, in the current study, ten commonly used reference genes were assessed for their suitability as optimal reference genes in M. officinalis under various abiotic stress conditions and different plant organs. The candidate genes were ranked based on BestKeeper, comparative ΔCt, geNorm, NormFinder, and RefFinder. Based on the results, we recommend the combination of EF-1α and GAPDH as the best reference genes to normalize gene expression studies in M. officinalis. On the contrary, HLH71 was identified as the least-performing gene. Thereafter, the reliability of the optimal gene combination was assessed by evaluating the relative gene expression of the phenylalanine ammonia lyase (PAL) gene under two elicitor treatments (gibberellic acid and jasmonic acid). PAL is a crucial gene involved directly or indirectly in the production of various economically important secondary metabolites in plants. Suitable reference genes for each experimental condition are also discussed. The findings of the current study form a basis for current and future gene expression studies in M. officinalis and other related species.
See more in PubMed
Shakeri A., Sahebkar A., Javadi B. Melissa officinalis L.—A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2016;188:204–228. doi: 10.1016/j.jep.2016.05.010. PubMed DOI
Draginic N., Jakovljevic V., Andjic M., Jeremic J., Srejovic I., Rankovic M., Tomovic M., Nikolic Turnic T., Svistunov A., Bolevich S., et al. Melissa officinalis L. as a nutritional strategy for cardioprotection. Front. Physiol. 2021;12:661778. doi: 10.3389/fphys.2021.661778. PubMed DOI PMC
Mahboubi M., Taghizadeh M., Talaei S.A., Takht Firozeh S.M., Rashidi A.A., Tamtaji O.R. Combined administration of Melissa officinalis and Boswellia serrata extracts in an animal model of memory. Iran. J. Psychiatry Behav. Sci. 2016;10:e681. doi: 10.17795/ijpbs-681. PubMed DOI PMC
Heshmati J., Morvaridzadeh M., Sepidarkish M., Fazelian S., Rahimlou M., Omidi A., Palmowski A., Asadi A., Shidfar F. Effects of Melissa officinalis (Lemon Balm) on cardio-metabolic outcomes: A systematic review and meta-analysis. Phytother. Res. 2020;34:3113–3123. doi: 10.1002/ptr.6744. PubMed DOI
Božović M., Garzoli S., Baldisserotto A., Romagnoli C., Pepi F., Cesa S., Vertuani S., Manfredini S., Ragno R. Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcang. Essential Oil: Chemical composition and preliminary antimicrobial investigation of samples obtained at different harvesting periods and by fractionated extractions. Ind. Crops Prod. 2018;117:317–321. doi: 10.1016/j.indcrop.2018.03.018. DOI
Kianersi F., Amin Azarm D., Pour-Aboughadareh A., Poczai P. Change in secondary metabolites and expression pattern of key rosmarinic acid related genes in iranian lemon balm (Melissa officinalis L.) ecotypes using methyl jasmonate treatments. Molecules. 2022;27:1715. doi: 10.3390/molecules27051715. PubMed DOI PMC
Tonelli M., Pellegrini E., D’Angiolillo F., Petersen M., Nali C., Pistelli L., Lorenzini G. Ozone-elicited secondary metabolites in shoot cultures of Melissa officinalis L. Plant Cell Tissue Organ Cult. 2015;120:617–629. doi: 10.1007/s11240-014-0628-8. DOI
Ramawat K.G. An introduction to the process of cell, tissue, and organ differentiation, and production of secondary metabolites. In: Ramawat K.G., Ekiert H.M., Goyal S., editors. Plant Cell and Tissue Differentiation and Secondary Metabolites. Springer International Publishing; Cham, Switzerland: 2021. pp. 1–22. (Reference Series in Phytochemistry). DOI
Bhaskar R., Xavier L.S.E., Udayakumaran G., Kumar D.S., Venkatesh R., Nagella P. Biotic elicitors: A boon for the in-vitro production of plant secondary metabolites. Plant Cell Tissue Organ Cult. 2022;149:7–24. doi: 10.1007/s11240-021-02131-1. DOI
Fooladi vanda G., Shabani L., Razavizadeh R. Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Bot. Stud. 2019;60:26. doi: 10.1186/s40529-019-0274-x. PubMed DOI PMC
Mansouri M., Mohammadi F. Transcriptome analysis to identify key genes involved in terpenoid and rosmarinic acid biosynthesis in lemon balm (Melissa officinalis) Gene. 2021;773:145417. doi: 10.1016/j.gene.2021.145417. PubMed DOI
Sen M.K., Hamouzová K., Košnarová P., Roy A., Soukup J. Identification of the most suitable reference gene for gene expression studies with development and abiotic stress response in Bromus sterilis. Sci. Rep. 2021;11:13393. doi: 10.1038/s41598-021-92780-1. PubMed DOI PMC
Chen M., Wang B., Li Y., Zeng M., Liu J., Ye X., Zhu H., Wen Q. Reference gene selection for QRT-PCR Analyses of luffa (Luffa cylindrica) plants under abiotic stress conditions. Sci. Rep. 2021;11:3161. doi: 10.1038/s41598-021-81524-w. PubMed DOI PMC
Oneto C.D., Bossio E., Faccio P., Beznec A., Lewi D. Validation of housekeeping genes for QPCR in maize during water deficit stress conditions at flowering time. Maydica. 2017;62(2):M13.
Galli V., Borowski J.M., Perin E.C., Messias R.d.S., Labonde J., Pereira I.d.S., Silva S.D.d.A., Rombaldi C.V. Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene. 2015;554:205–214. doi: 10.1016/j.gene.2014.10.049. PubMed DOI
Joseph J.T., Poolakkalody N.J., Shah J.M. Plant reference genes for development and stress response studies. J. Biosci. 2018;43:173–187. doi: 10.1007/s12038-017-9728-z. PubMed DOI
Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in arabidopsis. Plant Physiol. 2005;139:5–17. doi: 10.1104/pp.105.063743. PubMed DOI PMC
Dong X.-M., Zhang W., Zhang S.-B. Selection and validation of reference genes for quantitative real-time PCR analysis of development and tissue-dependent flower color formation in Cymbidium lowianum. Int. J. Mol. Sci. 2022;23:738. doi: 10.3390/ijms23020738. PubMed DOI PMC
Yin H., Yin D., Zhang M., Gao Z., Tuluhong M., Li X., Li J., Li B., Cui G. Validation of appropriate reference genes for QRT–PCR normalization in oat (Avena sativa L.) under UV-B and high-light stresses. Int. J. Mol. Sci. 2022;23:11187. doi: 10.3390/ijms231911187. PubMed DOI PMC
Aminfar Z., Rabiei B., Tohidfar M., Mirjalili M.H. Selection and validation of reference genes for quantitative real-time PCR in Rosmarinus officinalis L. in various tissues and under elicitation. Biocatal. Agric. Biotechnol. 2019;20:101246. doi: 10.1016/j.bcab.2019.101246. DOI
Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26:509–515. doi: 10.1023/B:BILE.0000019559.84305.47. PubMed DOI
Silver N., Best S., Jiang J., Thein S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006;7:33. doi: 10.1186/1471-2199-7-33. PubMed DOI PMC
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI
Xie F., Xiao P., Chen D., Xu L., Zhang B. MiRDeepFinder: A MiRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012;80:75–84. doi: 10.1007/s11103-012-9885-2. PubMed DOI
El-Naggar H.M., Read P.E. PAL Gene activity and rosmarinic acid production in rosemary genotypes. J. Herbs Spices Med. Plants. 2010;16:83–89. doi: 10.1080/10496475.2010.481907. DOI
Vyas P., Mukhopadhyay K. Elicitation of phenylpropanoids and expression analysis of PAL gene in suspension cell culture of Ocimum tenuiflorum L. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018;88:1207–1217. doi: 10.1007/s40011-017-0858-8. DOI
Kahila M.M.H., Najy A.M., Rahaie M., Mir-Derikvand M. Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in Nigella Sativa L. Nat. Prod. Res. 2018;32:1858–1862. doi: 10.1080/14786419.2017.1405398. PubMed DOI
Jalali S., Salami S.A., Sharifi M., Sohrabi S. Signaling compounds elicit expression of key genes in cannabinoid pathway and related metabolites in cannabis. Ind. Crops Prod. 2019;133:105–110. doi: 10.1016/j.indcrop.2019.03.004. DOI
Devi K., Mishra S.K., Sahu J., Panda D., Modi M.K., Sen P. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus. Sci. Rep. 2016;6:21026. doi: 10.1038/srep21026. PubMed DOI PMC
Aminfar Z., Rabiei B., Tohidfar M., Mirjalili M.H. Identification of key genes involved in the biosynthesis of triterpenic acids in the mint family. Scietific Rep. 2019;9:15826. doi: 10.1038/s41598-019-52090-z. PubMed DOI PMC
Bolhassani M., Niazi A., Tahmasebi A., Moghadam A. Identification of key genes associated with secondary metabolites biosynthesis by system network analysis in Valeriana officinalis. J. Plant Res. 2021;134:625–639. doi: 10.1007/s10265-021-01277-5. PubMed DOI
Abdollahi Mandoulakani B., Eyvazpour E., Ghadimzadeh M. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum Basilicum L.) Phytochemistry. 2017;139:1–7. doi: 10.1016/j.phytochem.2017.03.006. PubMed DOI
Negrutskii B.S., El’skaya A.V. Progress in Nucleic Acid Research and Molecular Biology. Volume 60. Elsevier; Amsterdam, The Netherlands: 1998. Eukaryotic translation elongation factor 1α: Structure, expression, functions, and possible role in aminoacyl-TRNA channeling; pp. 47–78. PubMed
Tristan C., Shahani N., Sedlak T.W., Sawa A. The diverse functions of GAPDH: Views from different subcellular compartments. Cell. Signal. 2011;23:317–323. doi: 10.1016/j.cellsig.2010.08.003. PubMed DOI PMC
Ashrafi M., Azimi Moqadam M.R., Moradi P., Mohsenifard E., Shekari F. Evaluation and validation of housekeeping genes in two contrast species of thyme plant to drought stress using real-time PCR. Plant Physiol. Biochem. 2018;132:54–60. doi: 10.1016/j.plaphy.2018.08.007. PubMed DOI
Gopalam R., Rupwate S.D., Tumaney A.W. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica. PLoS ONE. 2017;12:e0186978. doi: 10.1371/journal.pone.0186978. PubMed DOI PMC
Lian C., Zhang B., Yang J., Lan J., Yang H., Guo K., Li J., Chen S. Validation of suitable reference genes by various algorithms for gene expression analysis in isodon rubescens under different abiotic stresses. Sci. Rep. 2022;12:19599. doi: 10.1038/s41598-022-22397-5. PubMed DOI PMC
Yang Y., Hou S., Cui G., Chen S., Wei J., Huang L. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza. Mol. Biol. Rep. 2010;37:507–513. doi: 10.1007/s11033-009-9703-3. PubMed DOI
Borah B., Hussain M., Wann S.B., Bhau B.S. Selection and Validation of suitable reference genes for quantitative real time PCR analysis of gene expression studies in patchouli under meloidogyne incognita attack and PGPR treatment. Gene Rep. 2020;19:100625. doi: 10.1016/j.genrep.2020.100625. DOI
Bharati R., Sen M.K., Kumar R., Gupta A., Sur V.P., Melnikovová I., Fernández-Cusimamani E. Selection and validation of the most suitable reference genes for quantitative real-time PCR normalization in Salvia rosmarinus under in vitro conditions. Plants. 2022;11:2878. doi: 10.3390/plants11212878. PubMed DOI PMC
Wang H.-L., Chen J., Tian Q., Wang S., Xia X., Yin W. Identification and validation of reference genes for populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR. Physiol. Plant. 2014;152:529–545. doi: 10.1111/ppl.12206. PubMed DOI
Valenzuela F., D’Afonseca V., Hernández R., Gómez A., Arencibia A.D. Validation of reference genes in a population of blueberry (Vaccinium corymbosum) plants regenerated in colchicine. Plants. 2022;11:2645. doi: 10.3390/plants11192645. PubMed DOI PMC
Beranová K., Bharati R., Žiarovská J., Bilčíková J., Hamouzová K., Klíma M., Fernández-Cusimamani E. Morphological, cytological, and molecular comparison between diploid and induced autotetraploids of Callisia fragrans (Lindl.) woodson. Agronomy. 2022;12:2520. doi: 10.3390/agronomy12102520. DOI