Growth-Promoting Characteristics of Fungal and Bacterial Endophytes Isolated from a Drought-Tolerant Mint Species Endostemon obtusifolius (E. Mey. ex Benth.) N. E. Br

. 2023 Feb 01 ; 12 (3) : . [epub] 20230201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36771720

Endophytes are primarily endosymbiotic bacteria and fungi that colonize the interior tissues of their host plant. They enhance the host plant's growth and attenuate adverse effects of biological stress. Endophytic species of many indigenous plants are an untapped resource of plant growth-promoting microorganisms that can mitigate abiotic stress effects. Thus, this study aimed to isolate endophytes from the roots and leaves of the medicinal plant Endostemon obtusifolius to evaluate their in vitro growth-promoting capacities and drought tolerance and to characterize the most promising species. Twenty-six endophytes (fourteen bacteria and twelve fungi) were isolated and cultured from the roots and leaves of E. obtusifolius. All 26 endophytes produced flavonoids, and 14 strains produced phenolic compounds. Of the 11 strains that displayed good free radical scavenging capability (low IC50) in the 1-1-diphenyl-1-picryhydrazyl radical scavenging assay, only three strains could not survive the highest drought stress treatment (40% polyethylene glycol). These 11 strains were all positive for ammonia and siderophore production and only one strain failed to produce hydrogen cyanide and solubilize phosphate. Seven isolates showed aminocyclopropane-1-carboxylate deaminase activity and differentially synthesized indole-3-acetic acid. Using molecular tools, two promising symbiotic, drought stress tolerant, and plant growth-enhancing endophytic species (EORB-2 and EOLF-5) were identified as Paenibacillus polymyxa and Fusarium oxysporum. The results of this study demonstrate that P. polymyxa and F. oxysporum should be further investigated for their drought stress mitigation and plant growth enhancement effects as they have the potential to be developed for use in sustainable agricultural practices.

Zobrazit více v PubMed

Imadi S.R., Kazi A.G., Hashem A., Abd-Allah E.F., Alqarawi A.A., Ahmad P. Medicinal plants under abiotic stress. In: Azooz M.M., Ahmad P., editors. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress. John Wiley and Sons; Hoboken, NJ, USA: 2015. pp. 300–310.

Ramakrishna A., Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011;6:1720–1731. PubMed PMC

Joetzjer E., Delire C., Douville H., Ciais P., Decharme B., Fisher R., Christoffersen B., Calvet J.C., Da Costa A.C.L., Ferreira L.V., et al. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: A major challenge for global land surface models. Geosci. Model. Dev. 2014;7:2933–2950. doi: 10.5194/gmd-7-2933-2014. DOI

Dikilitas M., Karakas S., Hashem A., Abd Allah E.F., Ahmad P. Oxidative stress and plant responses to pathogens under drought conditions. In: Ahmed P., editor. Water Stress and Crop Plants: A Sustainable Approach. 1st ed. John Wiley and Sons; Hoboken, NJ, USA: 2016. pp. 102–123.

Jaleel C.A., Manivannan P., Lakshmanan G.M.A., Gomathinayagam M., Panneerselvam R. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf. B Biointerfaces. 2008;61:298–303. doi: 10.1016/j.colsurfb.2007.09.008. PubMed DOI

Ogbe A.A., Finnie J.F., Van Staden J. The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. S. Afr. J. Bot. 2020;134:126–134. doi: 10.1016/j.sajb.2020.06.023. DOI

Silva C.F., Vitorino L.C., Mendonça M.A.C., Araújo W.L., Dourado M.N., Albuquerque L.C., Soares M.A., Souchie E.L. Screening of plant growth-promoting endophytic bacteria from the roots of the medicinal plant Aloe vera. S. Afr. J. Bot. 2020;134:3–16. doi: 10.1016/j.sajb.2019.09.019. DOI

Egamberdieva D., Wirth S.J., Shurigin V.V., Hashem A., Abd Allah E.F. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front. Microbiol. 2017;8:1887. doi: 10.3389/fmicb.2017.01887. PubMed DOI PMC

Nair D.N., Padmavathy S. Impact of endophytic microorganisms on plants, environment, and humans. Sci. World J. 2014;2014:250693. doi: 10.1155/2014/250693. PubMed DOI PMC

Lee K., Missaoui A., Mahmud K., Presley H., Lonnee M. Interaction between grasses and Epichloë endophytes and its significance to biotic and abiotic stress tolerance and the rhizosphere. Microorganisms. 2021;9:2186. doi: 10.3390/microorganisms9112186. PubMed DOI PMC

Naveed M., Hussain M.B., Zahir Z.A., Mitter B., Sessitsch A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul. 2014;73:121–131. doi: 10.1007/s10725-013-9874-8. DOI

Wicaksono W.A., Eirian Jones E., Monk J., Ridgway H.J. Using bacterial endophytes from a New Zealand native medicinal plant for control of grapevine trunk diseases. Biol. Control. 2017;114:65–72. doi: 10.1016/j.biocontrol.2017.08.003. DOI

Nimaichand S., Devi A.M., Li W.J. Direct plant growth-promoting ability of actinobacteria in grain legumes. In: Subramaniam G., Arumugam S., Rajendran V., editors. Plant Growth Promoting Actinobacteria: A New Avenue for Enhancing the Productivity and Soil Fertility of Grain Legumes. Springer; Singapore: 2016. pp. 1–298.

Vurukonda S.S.K.P., Vardharajula S., Shrivastava M., SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016;184:13–24. doi: 10.1016/j.micres.2015.12.003. PubMed DOI

Vurukonda S.S.K.P., Giovanardi D., Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. As endophytes. Int. J. Mol. Sci. 2018;19:952. doi: 10.3390/ijms19040952. PubMed DOI PMC

Yaish M.W., Antony I., Glick B.R., van Leeuwenhoek A. Isolation and characterization of endophytic plant growth-promoting bacteria from a date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Int. J. Mol. Microbiol. 2015;107:1519–1532. doi: 10.1007/s10482-015-0445-z. PubMed DOI

Lin L., Xu X. Indole-3-acetic acid production by endophytic Streptomyces sp. EN-1 isolated from medicinal plants. Curr. Microbiol. 2013;67:209–217. doi: 10.1007/s00284-013-0348-z. PubMed DOI

Kundan R., Pant G. Plant growth promoting rhizobacteria: Mechanism and Current Prospective. J. Biofert. Biopest. 2015;6:9. doi: 10.4172/2471-2728.1000155. DOI

Figueiredo J.E.F., Gomes E.A., Guimarães C.T., Lana U.d.P., Teixeira M.A., Lima G.V.C., Bressan W. Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L.) Braz. J. Microbiol. 2009;40:522–534. doi: 10.1590/S1517-83822009000300014. PubMed DOI PMC

Marwat S.K., Fazal-Ur-Rehman Khan M.S., Ghulam S., Anwar N., Mustafa G., Usman K. Phytochemical constituents and pharmacological activities of sweet Basil—Ocimum basilicum L. (Lamiaceae) Asian J. Chem. 2011;23:3773–3782.

Orhan I., Kartal M., Naz Q., Ejaz A., Yilmaz G., Kan Y., Konuklugil B., Şener B., Iqbal Choudhary M. Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chem. 2007;103:1247–1254. doi: 10.1016/j.foodchem.2006.10.030. DOI

Sadashiva C.T., Naidoo Y., Naidoo J.R., Kalicharan B., Naidoo G. Antioxidant and acetylcholinesterase activities of three species of the family Lamiaceae. Bangladesh J. Bot. 2014;43:331–335. doi: 10.3329/bjb.v43i3.21606. DOI

Hassan S.E.D. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J. Adv. Res. 2017;8:687–695. doi: 10.1016/j.jare.2017.09.001. PubMed DOI PMC

You C., Qin D., Wang Y., Lan W., Li Y., Yu B., Peng Y., Xu J., Dong J. Plant triterpenoids regulate endophyte community to promote medicinal plant Schisandra sphenanthera Growth and Metabolites Accumulation. J. Fungi. 2021;7:788. doi: 10.3390/jof7100788. PubMed DOI PMC

Tan R.X., Zou W.X. Endophytes: A rich source of functional metabolites. Nat. Prod. Rep. 2001;18:448–459. doi: 10.1039/b100918o. PubMed DOI

Kaur N., Arora D.S., Kalia N., Kaur M. Bioactive potential of endophytic fungus Chaetomium globosum and GC–MS analysis of its responsible components. Sci. Rep. 2020;10:18792. doi: 10.1038/s41598-020-75722-1. PubMed DOI PMC

Nair A.C., Goveas S., D’Souza L., D’Cunha F., D’Souza V. Antibacterial and antioxidant potential of organic solvents extracts of Mangrove endophytic fungus Eupenicillium senticosum Scott. J. Alternat. Med. Res. 2017;9:65–73.

Yadav M., Yadav A., Yadav J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med. 2014;7:S256–S261. doi: 10.1016/S1995-7645(14)60242-X. PubMed DOI

Li Y., Cheng C., An D. Characterization of endophytic bacteria from a desert plant Lepidium perfoliatum L. Plant Prot. Sci. 2017;53:32–43. doi: 10.17221/14/2016-PPS. DOI

Ripa F.A., Cao W.D., Tong S., Sun J.G. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. Biomed. Res. Int. 2019;2019:6105865. doi: 10.1155/2019/6105865. PubMed DOI PMC

Malakar P., Singh V.K., Karmakar R., Venkatesh K.V. Effect on β-galactosidase synthesis and burden on growth of osmotic stress in Escherichia coli. SpringerPlus. 2014;3:748. doi: 10.1186/2193-1801-3-748. PubMed DOI PMC

Liu Z., Fu B., Zheng X., Liu G. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 2010;42:445–450. doi: 10.1016/j.soilbio.2009.11.027. DOI

Zak D.R., Holmes W.E., White D.C., Peacock A.D., Tilman D., Zak D.R., Holmes W.E., White D.C., Peacock A.D., Tilman D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links ? Ecology. 2016;84:2042–2050. doi: 10.1890/02-0433. DOI

Rolli E., Marasco R., Vigani G., Ettoumi B., Mapelli F., Deangelis M.L., Gandolfi C., Casati E., Previtali F., Gerbino R., et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ. Microbiol. 2015;17:316–331. doi: 10.1111/1462-2920.12439. PubMed DOI

Vandana U.K., Rajkumari J., Singha L.P., Satish L., Alavilli H., Sudheer P.D.V.N., Chauhan S., Ratnala R., Satturu V., Mazumder P.B., et al. The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology. 2021;10:101. doi: 10.3390/biology10020101. PubMed DOI PMC

Chowdhury E.K., Jeon J., Rim S.O., Park Y.H., Kyu Lee S., Bae H. Composition, diversity, and bioactivity of culturable bacterial endophytes in mountain-cultivated ginseng in Korea. Sci. Rep. 2017;7:10098. doi: 10.1038/s41598-017-10280-7. PubMed DOI PMC

Oteino N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015;6:745. doi: 10.3389/fmicb.2015.00745. PubMed DOI PMC

Scagliola M., Pii Y., Mimmo T., Cesco S., Ricciuti P., Crecchio C. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol. Biochem. 2016;107:187–196. doi: 10.1016/j.plaphy.2016.06.002. PubMed DOI

Ahmad F., Ahmad I., Khan M.S. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 2005;29:29–34.

Maheshwari R., Bhutani N., Suneja P. Isolation and characterization of ACC deaminase producing endophytic Bacillus mojavensis PRN2 from Pisum sativum. Iran. J. Biotechnol. 2020;18:11–20. PubMed PMC

Rauf M., Awais M., Ud-Din A., Ali K., Gul H., Rahman M.M., Hamayun M., Arif M. Molecular mechanisms of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing Trichoderma asperellum MAP1 in enhancing wheat tolerance to waterlogging stress. Front. Plant Sci. 2021;11:614971. doi: 10.3389/fpls.2020.614971. PubMed DOI PMC

Dubey A., Saiyam D., Kumar A., Hashem A., Abduallah E.F., Khan M.L. Bacterial root endophytes: Characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress. Int. J. Environ. Res. Public Health. 2021;18:931. doi: 10.3390/ijerph18030931. PubMed DOI PMC

Chukwuneme C.F., Babalola O.O., Kutu F.R., Ojuederie O.B. Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. J. Plant Interact. 2020;15:93–105. doi: 10.1080/17429145.2020.1752833. DOI

Sapre S., Gontia-Mishra I., Tiwari S. ACC deaminase-producing bacteria: A key player in alleviating abiotic stresses in plants. In: Kumar A., Meena V., editors. Plant Growth Promoting Rhizobacteria for Agricultural Sustainability. Springer; Singapore: 2019. pp. 267–291.

Glick B.R. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 2004;56:291–312. PubMed

Katoch M., Pull S. Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharm. Biol. 2017;55:1528–1535. doi: 10.1080/13880209.2017.1309054. PubMed DOI PMC

Banerjee D., Manna S., Mahapatra S., Pati B.R. Fungal endophytes in three medicinal plants of Lamiaceae. Acta Microbiol. Immunol. Hung. 2009;56:243–250. doi: 10.1556/AMicr.56.2009.3.4. PubMed DOI

Zhao L., Xu Y., Lai X.H., Shan C., Deng Z., Ji Y. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz. J. Microbiol. 2015;46:977–989. doi: 10.1590/S1517-838246420140024. PubMed DOI PMC

Khan M.S., Gao J., Chen X., Zhang M., Yang F., Du Y., Moe T.S., Munir I., Xue J., Zhang X. Isolation and characterization of plant growth-promoting endophytic bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. Biomed. Res. Int. 2020;2020:8650957. doi: 10.1155/2020/8650957. PubMed DOI PMC

Ghiasvand M., Makhdoumi A., Matin M.M., Vaezi J. Exploring the bioactive compounds from endophytic bacteria of a medicinal plant: Ephedra foliata (Ephedrales: Ephedraceae) Orient. Pharm. Exp. Med. 2019;20:61–70. doi: 10.1007/s13596-019-00410-z. DOI

Gao Y., Liu Q., Zang P., Li X., Ji Q., He Z., Zhao Y., Yang H., Zhao X., Zhang L. An endophytic bacterium isolated from Panax ginseng C.A. Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem. Lett. 2015;11:132–138. doi: 10.1016/j.phytol.2014.12.007. DOI

Wang X.M., Yang B., Wang H.W., Yang T., Ren C.G., Zheng H.L., Dai C.C. Consequences of antagonistic interactions between endophytic fungus and bacterium on plant growth and defense responses in Atractylodes lancea. J. Basic Microbiol. 2015;55:659–670. doi: 10.1002/jobm.201300601. PubMed DOI

Kia S.H., Pallesch S., Piepenbring M., Maciá-Vicente J.G. Root endophytic fungi show low levels of interspecific competition in planta. Fungal Ecol. 2019;39:184–191. doi: 10.1016/j.funeco.2019.02.009. DOI

Khan M.S., Gao J., Zhang M., Chen X., Moe T.S., Du Y., Yang F., Xue J., Zhang X. Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3Biotech. 2020;10:305. doi: 10.1007/s13205-020-02294-2. PubMed DOI PMC

Timmusk S., Copolovici D., Copolovici L., Teder T., Nevo E., Behers L. Paenibacillus polymyxa biofilm polysaccharides antagonize Fusarium graminearum. Sci. Rep. 2019;9:662. doi: 10.1038/s41598-018-37718-w. PubMed DOI PMC

Jimtha J.C., Smitha P.V., Anisha C., Deepthi T., Meekha G., Radhakrishnana E.K., Gayatri G.P., Remakanthan A. Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties. Plant Cell Tiss. Org. Cult. 2014;118:57–66. doi: 10.1007/s11240-014-0461-0. DOI

Khan A.R., Ullah I., Waqas M., Shahzad R., Hong S.J., Park G.S., Jung B.K., Lee I.J., Shin J.H. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J. Microbiol. Biotechnol. 2015;31:1461–1466. doi: 10.1007/s11274-015-1888-0. PubMed DOI

Higginbotham S.J., Arnold A.E., Ibañez A., Spadafora C., Coley P.D., Kursar T.A. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE. 2013;9:e73192. doi: 10.1371/journal.pone.0073192. PubMed DOI PMC

Deljou A., Goudarzi S. Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iran. J. Biotechnol. 2016;14:25. doi: 10.15171/ijb.1259. PubMed DOI PMC

Dragović-Uzelac V., Levaj B., Bursać D., Pedisić S., Radojčić I., Biško A. Total phenolics and antioxidant capacity assays of selected fruits. Agric. Conspec. Sci. 2007;72:279–284.

Sridhar K., Charles A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH (rad) and ABTS (rad) assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019;275:41–49. doi: 10.1016/j.foodchem.2018.09.040. PubMed DOI

Eke P., Kumar A., Sahu K.P., Wakam L.N., Sheoran N., Ashajyothi M., Patel A., Fekam F.B. Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.) Microbiol. Res. 2019;228:126302. doi: 10.1016/j.micres.2019.126302. PubMed DOI

Milagres A.M.F., Machuca A., Napoleão D. Detection of siderophore production from several fungi and bacteria by a modification of Chrome Azurol S (CAS) agar plate assay. J. Microbiol. Methods. 1999;37:1–6. doi: 10.1016/S0167-7012(99)00028-7. PubMed DOI

Bakker A.W., Schippers B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biol. Biochem. 1987;19:451–457. doi: 10.1016/0038-0717(87)90037-X. DOI

Yadav R., Singh A.V., Kumar M., Yadav S. Phytochemical analysis and plant growth promoting properties of endophytic fungi isolated from tulsi and Aloe vera. Int. J. Agric. Stat. Sci. 2016;12:239–248.

Edi Premono M., Moawad A.M., Vlek P.L.G. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones. J. Agric. Sci. 1996;11:13–23.

Chand K., Shah S., Sharma J., Paudel M.R., Pant B. Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signal. Behav. 2020;15:1744294. doi: 10.1080/15592324.2020.1744294. PubMed DOI PMC

Jasim B., John Jimtha C., Jyothis M., Radhakrishnan E.K. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul. 2013;71:1–11. doi: 10.1007/s10725-013-9802-y. DOI

Naik B.S., Shashikala J., Krishnamurthy Y.L.A. Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol. Res. 2009;164:290–296. doi: 10.1016/j.micres.2006.12.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...