Methodology for estimation of undeformed thickness of arterial tissues
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36797267
PubMed Central
PMC9935509
DOI
10.1038/s41598-023-28871-y
PII: 10.1038/s41598-023-28871-y
Knihovny.cz E-zdroje
- MeSH
- aorta thoracica * MeSH
- mechanický stres MeSH
- prasata MeSH
- tlak MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Soft tissue sample thickness measurement is one of the major sources of differences between mechanical responses published by different groups. New method for the estimation of unloaded sample thickness of soft tissues is proposed in this study. Ten 30 × 30 mm and ten 20 × 20 mm samples of porcine anterior thoracic aortas were loaded by gradually increased radial force. Their deformed thickness was then recorded in order to generate a pressure-thickness response. Next, the limit pressure to which the response can be considered linear was estimated. Line was fitted to the linear part of the curve and extrapolated towards zero pressure to estimate unloaded thickness (7 kPa fit). For comparison, data near zero pressure were fitted separately and extrapolated towards zero (Near Zero fit). The limit pressure for the linearity of the response was around 7 kPa. The Unloaded thickness for 30 × 30 mm samples was 2.68 ± 0.31 mm and 2.68 ± 0.3 mm for Near Zero fit and 7 kPa fit, respectively. The Unloaded thickness for 20 × 20 mm samples was 2.60 ± 0.35 mm and 2.59 ± 0.35 mm for Near Zero fit and 7 kPa fit, respectively. The median of thickness difference between smaller and larger samples was not found statistically different. Proposed method can estimate unloaded undeformed sample thickness quickly and reliably.
Zobrazit více v PubMed
Sacks MS, Chuong CJ. Biaxial mechanical properties of passive right ventricular free wall myocardium. J. Biomech. Eng. 1993;115:202–205. doi: 10.1115/1.2894122. PubMed DOI
Polzer S, et al. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater. 2015;14:133–145. doi: 10.1016/j.actbio.2014.11.043. PubMed DOI
Gusic RJ, Petko M, Myung R, Gaynor JW, Gooch KJ. Mechanical properties of native and ex vivo remodeled porcine saphenous veins. J. Biomech. 2005;38:1770–1779. doi: 10.1016/j.jbiomech.2005.04.002. PubMed DOI
Horny L, et al. Age-related distribution of longitudinal pre-strain in abdominal aorta with emphasis on forensic application. Forensic Sci. Int. 2012;214:18–22. doi: 10.1016/j.forsciint.2011.07.007. PubMed DOI
Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review. J. R. Soc. Interface. 2013;10:20121004. doi: 10.1098/rsif.2012.1004. PubMed DOI PMC
Maher E, et al. Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J. Biomech. 2009;42:2760–2767. doi: 10.1016/j.jbiomech.2009.07.032. PubMed DOI
Bruder L, Pelisek J, Eckstein HH, Gee MW. Biomechanical rupture risk assessment of abdominal aortic aneurysms using clinical data: A patient-specific, probabilistic framework and comparative case-control study. PLoS ONE. 2020;15:e0242097. doi: 10.1371/journal.pone.0242097. PubMed DOI PMC
Vitasek R, Gossiho D, Polzer S. Sources of inconsistency in mean mechanical response of abdominal aortic aneurysm tissue. J. Mech. Behav. Biomed. Mater. 2020;115:104274. doi: 10.1016/j.jmbbm.2020.104274. PubMed DOI
Sigaeva T, Sattari S, Polzer S, Appoo JJ, Di Martino ES. Biomechanical properties of ascending aortic aneurysms: Quantification of inter- and intra-patient variability. J. Biomech. 2021;125:110542. doi: 10.1016/j.jbiomech.2021.110542. PubMed DOI
Lally C, Dolan F, Prendergast PJ. Cardiovascular stent design and vessel stresses: A finite element analysis. J. Biomech. 2005;38:1574–1581. doi: 10.1016/j.jbiomech.2004.07.022. PubMed DOI
Walsh MT, et al. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J. Biomech. 2014;47:793–804. doi: 10.1016/j.jbiomech.2014.01.017. PubMed DOI
Acosta Santamaría VA, Flechas García M, Molimard J, Avril S. Three-dimensional full-field strain measurements across a whole porcine aorta subjected to tensile loading using optical coherence tomography—Digital volume correlation. Front. Mech. Eng. 2018;4:1–14. doi: 10.3389/fmech.2018.00003. DOI
Sigaeva T, Polzer S, Vitásek R, di Martino ES. Effect of testing conditions on the mechanical response of aortic tissues from planar biaxial experiments: Loading protocol and specimen side. J. Mech. Behav. Biomed. Mater. 2020;111:103882. doi: 10.1016/j.jmbbm.2020.103882. PubMed DOI
Slazansky M, Polzer S, Man V, Bursa J. Analysis of accuracy of biaxial tests based on their computational simulations. Strain. 2016;52:424–435. doi: 10.1111/str.12205. DOI
O’Leary SA, Doyle BJ, McGloughlin TM. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J. Biomech. 2013;46:1955–1960. doi: 10.1016/j.jbiomech.2013.05.003. PubMed DOI
Di Martino ES, et al. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 2006;43:570–576. doi: 10.1016/j.jvs.2005.10.072. PubMed DOI
Raghavan ML, Webster MW, Vorp DA. Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model. Ann. Biomed. Eng. 1996;24:573–582. doi: 10.1007/BF02684226. PubMed DOI
Reeps C, et al. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech. Model Mechanobiol. 2013;12:717–733. doi: 10.1007/s10237-012-0436-1. PubMed DOI
Nolan DR, McGarry JP. On the compressibility of arterial tissue. Ann. Biomed. Eng. 2016;44:993–1007. doi: 10.1007/s10439-015-1417-1. PubMed DOI
Kermani G, Hemmasizadeh A, Assari S, Autieri M, Darvish K. Investigation of inhomogeneous and anisotropic material behavior of porcine thoracic aorta using nano-indentation tests. J. Mech. Behav. Biomed. Mater. 2017;69:50–56. doi: 10.1016/j.jmbbm.2016.12.022. PubMed DOI PMC
Chuong CJ, Fung YC. Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 1984;17:35–40. doi: 10.1016/0021-9290(84)90077-0. PubMed DOI
O’Leary SA, Doyle BJ, McGloughlin TM. The impact of long term freezing on the mechanical properties of porcine aortic tissue. J. Mech. Behav. Biomed. Mater. 2014;37:165–173. doi: 10.1016/j.jmbbm.2014.04.015. PubMed DOI
Peña JA, Martínez MA, Peña E. Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach. Biomech. Model. Mechanobiol. 2019;18:1709–1730. doi: 10.1007/s10237-019-01170-0. PubMed DOI
Kim J, Baek S. Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test. J. Biomech. 2011;44:1941–1947. doi: 10.1016/j.jbiomech.2011.04.022. PubMed DOI
Stemper BD, et al. Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res. 2007;139:236–242. doi: 10.1016/j.jss.2006.09.001. PubMed DOI
Peña JA, Martínez MA, Peña E. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. J. Mech. Behav. Biomed. Mater. 2015;50:55–69. doi: 10.1016/j.jmbbm.2015.05.024. PubMed DOI
Virues Delgadillo JO, Delorme S, El-Ayoubi R, DiRaddo R, Hatzikiriakos SG. Effect of freezing on the passive mechanical properties of arterial samples. J. Biomed. Sci. Eng. 2010;03:645–652. doi: 10.4236/jbise.2010.37088. DOI
Polzer S, et al. Failure properties of abdominal aortic aneurysm tissue are orientation dependent. J. Mech. Behav. Biomed. Mater. 2020 doi: 10.1016/j.jmbbm.2020.104181. PubMed DOI