Effects of all-trans and 9-cis retinoic acid on differentiating human neural stem cells in vitro
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36805303
PubMed Central
PMC10019519
DOI
10.1016/j.tox.2023.153461
PII: S0300-483X(23)00047-1
Knihovny.cz E-zdroje
- Klíčová slova
- Developmental neurotoxicity, Retinoid signaling, Thyroid hormone signaling,
- MeSH
- alitretinoin * toxicita MeSH
- buněčná diferenciace MeSH
- lidé MeSH
- nervové kmenové buňky * účinky léků MeSH
- receptory kyseliny retinové genetika metabolismus MeSH
- retinoidy farmakologie MeSH
- tretinoin * toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alitretinoin * MeSH
- receptory kyseliny retinové MeSH
- retinoidy MeSH
- tretinoin * MeSH
Cyanobacterial blooms are known sources of environmentally-occurring retinoid compounds, including all-trans and 9-cis retinoic acids (RAs). The developmental hazard for aquatic organisms has been described, while the implications for human health hazard assessment are not yet sufficiently characterized. Here, we employ a human neural stem cell model that can differentiate in vitro into a mixed culture of neurons and glia. Cells were exposed to non-cytotoxic 8-1000 nM all-trans or 9-cis RA for 9-18 days (DIV13 and DIV22, respectively). Impact on biomarkers was analyzed on gene expression (RT-qPCR) and protein level (western blot and proteomics) at both time points; network patterning (immunofluorescence) on DIV22. RA exposure significantly concentration-dependently increased gene expression of retinoic acid receptors and the metabolizing enzyme CYP26A1, confirming the chemical-specific response of the model. Expression of thyroid hormone signaling-related genes remained mostly unchanged. Markers of neural progenitors/stem cells (PAX6, SOX1, SOX2, NESTIN) were decreased with increasing RA concentrations, though a basal population remained. Neural markers (DCX, TUJ1, MAP2, NeuN, SYP) remained unchanged or were decreased at high concentrations (200-1000 nM). Conversely, (astro-)glial marker S100β was increased concentration-dependently on DIV22. Together, the biomarker analysis indicates an RA-dependent promotion of glial cell fates over neural differentiation, despite the increased abundance of neural protein biomarkers during differentiation. Interestingly, RA exposure induced substantial changes to the cell culture morphology: while low concentrations resulted in a network-like differentiation pattern, high concentrations (200-1000 nM RA) almost completely prevented such network patterning. After functional confirmation for implications in network function, such morphological features could present a proxy for network formation assessment, an apical key event in (neuro-)developmental Adverse Outcome Pathways. The described application of a human in vitro model for (developmental) neurotoxicity to emerging environmentally-relevant retinoids contributes to the evidence-base for the use of differentiating human in vitro models for human health hazard and risk assessment.
Zobrazit více v PubMed
Adams J. The neurobehavioral teratology of retinoids: a 50-year history. Birth Defects Res. Part A Clin. Mol. Teratol. 2010;88:895–905. doi: 10.1002/bdra.20721. PubMed DOI
Akanuma H., Qin X.-Y., Nagano R., Win-Shwe T.-T., Imanishi S., Zaha H., Yoshinaga J., Fukuda T., Ohsako S., Sone H. Identification of stage-specific gene expression signatures in response to retinoic acid during the neural differentiation of mouse embryonic stem cells. Front. Genet. 2012:3. doi: 10.3389/fgene.2012.00141. PubMed DOI PMC
Allenby, G., Bocquel, M.T., Saunders, M., Kazmer, S., Speck, J., Rosenberger, M., Lovey, A., Kastner, P., Grippo, J.F., Chambon, P., Levin, A.A., 1993. Retinoic acid receptors and retinoid X receptors: Interactions with endogenous retinoic acids. Proceedings of the National Academy of Sciences of the United States of America 90, 30–34. https://doi.org/10.1073/pnas.90.1.30. PubMed PMC
Almond-Roesler B., Blume-Peytavi U., Bisson S., Krahn M., Rohloff E., Orfanos C.E. Monitoring of isotretinoin therapy by measuring the plasma levels of isotretinoin and 4-oxo-isotretinoin. Dermatology. 1998;196:176–181. doi: 10.1159/000017856. PubMed DOI
Altucci L., Leibowitz M.D., Ogilvie K.M., de Lera A.R., Gronemeyer H. RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 2007;6:793–810. doi: 10.1038/nrd2397. PubMed DOI
Asano H., Aonuma M., Sanosaka T., Kohyama J., Namihira M., Nakashima K. Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification. Stem Cells. 2009;27:2744–2752. doi: 10.1002/STEM.176. PubMed DOI
Bal-Price A., Hogberg H.T. In vitro developmental neurotoxicity. Test.: Relev. Models Endpoints. 2014:125–146. doi: 10.1007/978-1-4939-0521-8_6. DOI
Bal-Price A., Crofton K.M., Leist M., Allen S., Arand M., Buetler T., Delrue N., FitzGerald R.E., Hartung T., Heinonen T., Hogberg H., Bennekou S.H., Lichtensteiger W., Oggier D., Paparella M., Axelstad M., Piersma A., Rached E., Schilter B., Schmuck G., Stoppini L., Tongiorgi E., Tiramani M., Monnet-Tschudi F., Wilks M.F., Ylikomi T., Fritsche E. International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch. Toxicol. 2015;89:269–287. doi: 10.1007/s00204-015-1464-2. PubMed DOI PMC
Bal-Price A., Pistollato F., Sachana M., Bopp S.K., Munn S., Worth A. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol. Appl. Pharmacol. 2018 doi: 10.1016/J.TAAP.2018.02.008. PubMed DOI PMC
Bayha E., Jørgensen M.C., Serup P., Grapin-Botton A. Retinoic acid signaling organizes endodermal organ specification along the entire antero-posterior axis. PLoS ONE. 2009:4. doi: 10.1371/journal.pone.0005845. PubMed DOI PMC
Behl M., Ryan K., Hsieh J.H., Parham F., Shapiro A.J., Collins B.J., Sipes N.S., Birnbaum L.S., Bucher J.R., Foster P.M.D., Walker N.J., Paules R.S., Tice R.R. Screening for developmental neurotoxicity at the national toxicology program: the future is here. Toxicol. Sci. 2019;167:258–268. doi: 10.1093/toxsci/kfy278. PubMed DOI PMC
Bohaciakova D., Hruska-Plochan M., Tsunemoto R., Gifford W.D., Driscoll S.P., Glenn T.D., Wu S., Marsala S., Navarro M., Tadokoro T., Juhas S., Juhasova J., Platoshyn O., Piper D., Sheckler V., Ditsworth D., Pfaff S.L., Marsala M. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res. Ther. 2019;10:83. doi: 10.1186/s13287-019-1163-7. PubMed DOI PMC
Bremner J.D., Shearer K.D., McCaffery P.J. Retinoic acid and affective disorders. J. Clin. Psychiatry. 2012;73:37–50. doi: 10.4088/JCP.10r05993. PubMed DOI PMC
Brent G.A. Mechanisms of thyroid hormone action. J. Clin. Investig. 2012;122 doi: 10.1172/JCI60047. 3035–43. PubMed DOI PMC
Chen H., Chidboy M.A., Robinson J.F. Retinoids and developmental neurotoxicity: utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reprod. Toxicol. 2020;96 doi: 10.1016/J.REPROTOX.2020.06.007. 102–113. PubMed DOI PMC
Chen N., Napoli J.L. All‐trans‐retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane‐associated RARα. FASEB J. 2008;22:236–245. doi: 10.1096/fj.07-8739com. PubMed DOI
Chen Y., Reese D.H. Disruption of retinol (vitamin A) signaling by phthalate esters: SAR and mechanism studies. PLOS ONE. 2016;11 doi: 10.1371/journal.pone.0161167. PubMed DOI PMC
Christie V.B., Maltman D.J., Henderson A.P., Whiting A., Marder T.B., Lako M., Przyborski S.A. Retinoid supplementation of differentiating human neural progenitors and embryonic stem cells leads to enhanced neurogenesis in vitro. J. Neurosci. Methods. 2010;193:239–245. doi: 10.1016/J.JNEUMETH.2010.08.022. PubMed DOI
Clark A.K., Wilder J.H., Grayson A.W., Johnson Q.R., Lindsay R.J., Nellas R.B., Fernandez E.J., Shen T. The promiscuity of allosteric regulation of nuclear receptors by retinoid X receptor. J. Phys. Chem. B. 2016;120:8338–8345. doi: 10.1021/acs.jpcb.6b02057. PubMed DOI PMC
Colleoni S., Galli C., Gaspar J.A., Meganathan K., Jagtap S., Hescheler J., Sachinidis A., Lazzari G. Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol. Sci. 2011;124:370–377. doi: 10.1093/TOXSCI/KFR245. PubMed DOI
Collins M.D., Tzimas G., Bürgin H., Hummler H., Nau H. Single versus multiple dose administration of all-trans-retinoic acid during organogenesis: differential metabolism and transplacental kinetics in rat and rabbit. Toxicol. Appl. Pharmacol. 1995;130:9–18. doi: 10.1006/taap.1995.1002. PubMed DOI
Coluccia A., Borracci P., Belfiore D., Renna G., Carratù M.R. Late embryonic exposure to all-trans retinoic acid induces a pattern of motor deficits unrelated to the developmental stage. NeuroToxicol. 2009;30:1120–1126. doi: 10.1016/j.neuro.2009.08.002. PubMed DOI
Dawson M.I., Xia Z. The retinoid X receptors and their ligands. Biochim. Et. Biophys. Acta Mol. Cell Biol. Lipids. 2012;1821:21–56. doi: 10.1016/j.bbalip.2011.09.014. PubMed DOI PMC
De Lera Á.R., Krężel W., Rühl R. An endogenous mammalian retinoid X receptor ligand, at last! ChemMedChem. 2016;11:1027–1037. doi: 10.1002/cmdc.201600105. PubMed DOI
Del Corral, R.D., Olivera-Martinez, I., Goriely, A., Gale, E., Maden, M., Storey, K Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron. 2003;40:65–79. doi: 10.1016/S0896-6273(03)00565-8. PubMed DOI
Downes J.H., Hammond M.W., Xydas D., Spencer M.C., Becerra V.M., Warwick K., Whalley B.J., Nasuto S.J. Emergence of a small-world functional network in cultured neurons. PLOS Comput. Biol. 2012;8 doi: 10.1371/JOURNAL.PCBI.1002522. e1002522. PubMed DOI PMC
Duester G. Retinoic acid synthesis and signaling during early organogenesis. Cell. 2008;134:921–931. doi: 10.1016/j.cell.2008.09.002. PubMed DOI PMC
EFSA NDA Scientific opinion on dietary reference values for vitamin A. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) EFSA J. 2015;13:4028. doi: 10.2903/j.efsa.2015.4028. DOI
Ellis-Hutchings R.G., Cherr G.N., Hanna L.A., Keen C.L. The effects of marginal maternal vitamin A status on penta-brominated diphenyl ether mixture-induced alterations in maternal and conceptal vitamin A and fetal development in the Sprague Dawley rat. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2009;86:48–57. doi: 10.1002/bdrb.20181. PubMed DOI
Endres K. Retinoic acid and the gut microbiota in Alzheimer’s disease: fighting back-to-back? Curr. Alzheimer Res. 2019;16:405–417. doi: 10.2174/1567205016666190321163705. PubMed DOI
Etchamendy N., Enderlin V., Marighetto A., Vouimba R.M., Pallet V., Jaffard R., Higueret P. Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J. Neurosci. 2001;21:6423–6429. doi: 10.1523/jneurosci.21-16-06423.2001. PubMed DOI PMC
Etchamendy N., Enderlin V., Marighetto A., Pallet V., Higueret P., Jaffard R. Vitamin A deficiency and relational memory deficit in adult mice: Relationships with changes in brain retinoid signalling. Behav. Brain Res. 2003;145:37–49. doi: 10.1016/S0166-4328(03)00099-8. PubMed DOI
Evans R.M., Mangelsdorf D.J. Nuclear receptors, RXR, and the big bang. Cell. 2014 doi: 10.1016/j.cell.2014.03.012. PubMed DOI PMC
Falk A., Koch P., Kesavan J., Takashima Y., Ladewig J., Alexander M., Wiskow O., Tailor J., Trotter M., Pollard S., Smith A., Brüstle O. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One. 2012;7 doi: 10.1371/JOURNAL.PONE.0029597. PubMed DOI PMC
Förster N., Butke J., Keßel H.E., Bendt F., Pahl M., Li L., Fan X., Leung P. chung, Klose J., Masjosthusmann S., Fritsche E., Mosig A. Reliable identification and quantification of neural cells in microscopic images of neurospheres. Cytom. Part A. 2021 doi: 10.1002/CYTO.A.24514. PubMed DOI
Fritsche E., Barenys M., Klose J., Masjosthusmann S., Nimtz L., Schmuck M., Wuttke S., Tigges J. Current availability of stem cell-based in vitro methods for developmental neurotoxicity (DNT) testing. Toxicol. Sci. 2018;165:21–30. doi: 10.1093/toxsci/kfy178. PubMed DOI
Fritsche E., Grandjean P., Crofton K.M., Aschner M., Goldberg A., Heinonen T., Hessel E.V.S., Hogberg H.T., Bennekou S.H., Lein P.J., Leist M., Mundy W.R., Paparella M., Piersma A.H., Sachana M., Schmuck G., Solecki R., Terron A., Monnet-Tschudi F., Wilks M.F., Witters H., Zurich M.-G., Bal-Price A. Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicol. Appl. Pharmacol. 2018 doi: 10.1016/j.taap.2018.02.004. PubMed DOI PMC
Fritsche E., Haarmann‐Stemmann T., Kapr J., Galanjuk S., Hartmann J., Mertens P.R., Kämpfer A.A.M., Schins R.P.F., Tigges J., Koch K. Stem cells for next level toxicity testing in the 21st century. Small. 2021;17:2006252. doi: 10.1002/smll.202006252. PubMed DOI
Germain P., Chambon P., Eichele G., Evans R.M., Lazar M.A., Leid M., De Lera A.R., Lotan R., Mangelsdorf D.J., Gronemeyer H. International union of pharmacology. LX. Retinoic acid receptors. Pharmacol. Rev. 2006 doi: 10.1124/pr.58.4.4. PubMed DOI
Ghyselinck N.B., Duester G. Retinoic acid signaling pathways. Dev. (Camb. ) 2019:146. doi: 10.1242/dev.167502. PubMed DOI PMC
Giachino C., Taylor V. Notching up neural stem cell homogeneity in homeostasis and disease. Front. Neurosci. 2014;0:32. doi: 10.3389/FNINS.2014.00032/BIBTEX. PubMed DOI PMC
Grignard E., Hakansson H., Munn S. Regulatory needs and activities to address the retinoid system in the context of endocrine disruption: The European viewpoint. Reprod. Toxicol. 2020;93:250–258. doi: 10.1016/j.reprotox.2020.03.002. PubMed DOI PMC
Hendrickx A.G., Peterson P., Hartmann D., Hummler H. Vitamin A teratogenicity and risk assessment in the macaque retinoid model. Reprod. Toxicol. 2000;14 doi: 10.1016/s0890-6238(00)00091-5. 311–23. PubMed DOI
Henion P.D., Weston J.A. Retinoic acid selectively promotes the survival and proliferation of neurogenic precursors in cultured neural crest cell populations. Dev. Biol. 1994;161:243–250. doi: 10.1006/dbio.1994.1024. PubMed DOI
Héral M., Alzieu C., Deslous-Paoli J.-M. In: Aquaculture - a Biotechnology in Progress. Pauw D., Jaspers E., Ackefors H., Wilkins N., editors. European Aquaculture Society; Bredene, Belgium: 1989. Effect of organotin compounds (TBT) used in antifouling paints on cultured marine molluscs - a literature study; pp. 1081–1089.
Herrmann K. Teratogenic effects of retinoic acid and related substances on the early development of the zebrafish (BrachyDanio rerio) as assessed by a novel scoring system. Toxicol. Vitr. 1995;9:267–283. doi: 10.1016/0887-2333(95)00012-W. PubMed DOI
Ibrayeva A., Bay M., Pu E., Jörg D.J., Peng L., Jun H., Zhang N., Aaron D., Lin C., Resler G., Hidalgo A., Jang M.-H., Simons B.D., Bonaguidi M.A. Early stem cell aging in the mature brain. Cell Stem Cell. 2021;28(955–966) doi: 10.1016/j.stem.2021.03.018. PubMed DOI PMC
bin Imtiaz M.K., Jaeger B.N., Bottes S., Machado R.A.C., Vidmar M., Moore D.L., Jessberger S. Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell. 2021;28(967–977) doi: 10.1016/J.STEM.2021.01.015. e8. PubMed DOI
Isales G.M., Hipszer R.A., Raftery T.D., Chen A., Stapleton H.M., Volz D.C. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor. Aquat. Toxicol. 2015;161:221–230. doi: 10.1016/j.aquatox.2015.02.009. PubMed DOI PMC
Janesick A., Wu S.C., Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell. Mol. Life Sci. 2015;72:1559–1576. doi: 10.1007/s00018-014-1815-9. PubMed DOI PMC
Janesick A., Wu S.C., Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell. Mol. Life Sci. 2015 doi: 10.1007/S00018-014-1815-9. PubMed DOI PMC
Javůrek J., Sychrová E., Smutná M., Bittner M., Kohoutek J., Adamovský O., Nováková K., Smetanová S., Hilscherová K. Retinoid compounds associated with water blooms dominated by Microcystis species. Harmful Algae. 2015;47:116–125. doi: 10.1016/j.hal.2015.06.006. DOI
Kastner P., Mark M., Ghyselinck N., Krężel W., Dupé V., Grondona J.M., Chambon P. Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development. 1997;124:313–326. PubMed
Kogai T., Liu Y.-Y., Richter L.L., Mody K., Kagechika H., Brent G.A. Retinoic acid induces expression of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8) J. Biol. Chem. 2010;285:27279–27288. doi: 10.1074/jbc.M110.123158. PubMed DOI PMC
Krężel W., Rühl R., de Lera A.R. Alternative retinoid X receptor (RXR) ligands. Mol. Cell. Endocrinol. 2019 doi: 10.1016/j.mce.2019.04.016. PubMed DOI
Kruyt F.A.E., van der Veer L.J., Mader S., van den Brink C.E., Feijen A., Jonk L.J.C., Kruijer W., van der Saag P.T. Retinoic acid resistance of the variant embryonal carcinoma cell line RAC65 is caused by expression of a truncated RARα. Differentiation. 1992;49:27–37. doi: 10.1111/j.1432-0436.1992.tb00766.x. PubMed DOI
Kubickova B., Laboha P., Hildebrandt J.-P., Hilscherová K.K., Babica P., Kubíčková B., Labohá P., Hildebrandt J.-P., Hilscherová K.K., Babica P., Kubickova B., Laboha P., Hildebrandt J.-P., Hilscherová K.K., Babica P. Effects of cylindrospermopsin on cultured immortalized human airway epithelial cells. Chemosphere. 2019;220:620–628. doi: 10.1016/J.CHEMOSPHERE.2018.12.157. PubMed DOI
Kubickova B., Ramwell C., Hilscherova K., Jacobs M.N. Highlighting the gaps in hazard and risk assessment of unregulated Endocrine Active Substances in surface waters: retinoids as a European case study. Environ. Sci. Eur. 2021;33:1–38. doi: 10.1186/s12302-020-00428-0. DOI
Lane M.A., Bailey S.J. Role of retinoid signalling in the adult brain. Prog. Neurobiol. 2005 doi: 10.1016/j.pneurobio.2005.03.002. PubMed DOI
Lehman P.A., Franz T.J. A sensitive high-pressure liquid chromatography/particle beam/mass spectrometry assay for the determination of all-trans-retinoic acid and 13-cis-retinoic acid in human plasma. J. Pharm. Sci. 1996;85:287–290. doi: 10.1021/js950339x. PubMed DOI
Lima D., Reis-Henriques M.A., Silva R., Santos A.I., Filipe L., Santos M.M. Tributyltin-induced imposex in marine gastropods involves tissue-specific modulation of the retinoid X receptor. Aquat. Toxicol. 2011;101:221–227. doi: 10.1016/j.aquatox.2010.09.022. PubMed DOI
Lima, D., Castro, L.F.C., Coelho, I., Lacerda, R., Gesto, M., Soares, J., André, A., Capela, R., Torres, T., Carvalho, A.P., Santos, M.M., 2015. Effects of Tributyltin and Other Retinoid Receptor Agonists in Reproductive-Related Endpoints in the Zebrafish (Danio rerio). http://dx.doi.org/10.1080/15287394.2015.1028301 78, 747–760. https://doi.org/10.1080/15287394.2015.1028301. PubMed
Loser D., Schaefer J., Danker T., Möller C., Brüll M., Suciu I., Ückert A.K., Klima S., Leist M., Kraushaar U. Human neuronal signaling and communication assays to assess functional neurotoxicity. Arch. Toxicol. 2020;95:229–252. doi: 10.1007/S00204-020-02956-3. 2020 95:1. PubMed DOI PMC
Loudig O., Babichuk C., White J., Abu-Abed S., Mueller C., Petkovich M. Cytochrome P450RAI(CYP26) promoter: a distinct composite retinoic acid response element underlies the complex regulation of retinoic acid metabolism. Mol. Endocrinol. (Baltim., Md. ) 2000;14:1483–1497. doi: 10.1210/MEND.14.9.0518. PubMed DOI
Lucek, R.W., Colburn, W.A., 1985. Clinical Pharmacokinetics of the Retinoids. Clinical Pharmacokinetics 10, 38–62. https://doi.org/10.2165/00003088–198510010-00002. PubMed
Maden M. The role of retinoic acid in embryonic and post-embryonic development. Proc. Nutr. Soc. 2000;59:65–73. PubMed
Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat. Rev. Neurosci. 2007;8:755–765. doi: 10.1038/nrn2212. PubMed DOI
Maden M., Holder N. The involvement of retinoic acid in the development of the vertebrate central nervous system. Dev. (Camb., Engl. ). Suppl. 1991;Suppl 2:87–94. PubMed
Maden M., Holder N. Retinoic acid and development of the central nervous system. BioEssays. 1992;14:431–438. doi: 10.1002/bies.950140702. PubMed DOI
le Maire, Teyssier, Balaguer, Bourguet, Germain Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and their combinations. Cells. 2019;8:1392. doi: 10.3390/cells8111392. PubMed DOI PMC
Masjosthusmann S., Blum J., Bartmann K., Dolde X., Holzer A.-K., Stürzl L.-C., Keßel E.H., Förster N., Dönmez A., Klose J., Pahl M., Waldmann T., Bendt F., Kisitu J., Suciu I., Hübenthal U., Mosig A., Leist M., Fritsche E. Establishment of an a priori protocol for the implementation and interpretation of an in-vitro testing battery for the assessment of developmental neurotoxicity. EFSA Support. Publ. 2020;17:1938E. doi: 10.2903/SP.EFSA.2020.EN-1938. DOI
Morriss-Kay G.M., Wardt S.J. Retinoids and mammalian development. Int. Rev. Cytol. 1999;188:73–131. doi: 10.1016/s0074-7696(08)61566-1. PubMed DOI
Nakanishi T., Nishikawa J., Hiromori Y., Yokoyama H., Koyanagi M., Takasuga S., Ishizaki J., Watanabe M., Isa S., Utoguchi N., Itoh N., Kohno Y., Nishihara T., Tanaka K. Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions. Mol. Endocrinol. 2005;19:2502–2516. doi: 10.1210/ME.2004-0397. PubMed DOI
Nezvedová M., Jha D., Váňová T., Gadara D., Klímová H., Raška J., Opálka L., Bohačiaková D., Spáčil Z. Single cerebral organoid mass spectrometry of cell-specific protein and glycosphingolipid traits. Analytical chemistry. 2023;95(6):3160–3167. doi: 10.1021/acs.analchem.2c00981. PubMed DOI PMC
Niederreither K., Dollé P. Retinoic acid in development: towards an integrated view. Nat. Rev. Genet. 2008 doi: 10.1038/nrg2340. PubMed DOI
Niederreither K., Vermot J., Schuhbaur B., Chambon P., Dollé P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development. 2000;127:75–85. PubMed
Nilsson, C., 2020. Retinoids in Mammalian Reproduction, with an Initial Scoping Effort to Identify Regulatory Methods. TemaNord 2020:507, TemaNord. Nordic Council of Ministers. https://doi.org/10.6027/temanord2020–507.
Nimtz, L., Klose, J., Masjosthusmann, S., Barenys, M., Fritsche, E., 2019. The neurosphere assay as an in vitro method for developmental neurotoxicity (DNT) evaluation, in: Neuromethods. Humana Press Inc., pp. 141–168. https://doi.org/10.1007/978–1-4939–9228-7_8.
Nishikawa J.I., Mamiya S., Kanayama T., Nishikawa T., Shiraishi F., Horiguchi T. Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. Environ. Sci. Technol. 2004;38:6271–6276. doi: 10.1021/es049593u. PubMed DOI
Nolen G.A. The effects of prenatal retinoic acid on the viability and behavior of the offspring. Neurobehav. Toxicol. Teratol. 1986;8 643–54. PubMed
Okada Y., Shimazaki T., Sobue G., Okano H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev. Biol. 2004;275:124–142. doi: 10.1016/j.ydbio.2004.07.038. PubMed DOI
Paul-Friedman K., Martin M., Crofton K.M., Hsu C.-W., Sakamuru S., Zhao J., Xia M., Huang R., Stavreva D.A., Soni V., Varticovski L., Raziuddin R., Hager G.L., Houck K.A. Limited chemical structural diversity found to modulate thyroid hormone receptor in the Tox21 chemical library. Environ. Health Perspect. 2019;127 doi: 10.1289/EHP5314. PubMed DOI PMC
Pennimpede T., Cameron D.A., MacLean G.A., Li H., Abu-Abed S., Petkovich M. The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis. Birth Defects Res. Part A Clin. Mol. Teratol. 2010;88:883–894. doi: 10.1002/bdra.20709. PubMed DOI
Penvose A., Keenan J.L., Bray D., Ramlall V., Siggers T. Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat. Commun. 2019;10:2514. doi: 10.1038/s41467-019-10264-3. PubMed DOI PMC
Piersma A.H., Hessel E.V., Staal Y.C. Retinoic acid in developmental toxicology: teratogen, morphogen and biomarker. Reprod. Toxicol. 2017;72:53–61. doi: 10.1016/j.reprotox.2017.05.014. PubMed DOI
Pípal M., Novák J., Rafajová A., Smutná M., Hilscherová K. Teratogenicity of retinoids detected in surface waters in zebrafish embryos and its predictability by in vitro assays. Aquat. Toxicol. 2022 doi: 10.1016/J.AQUATOX.2022.106151. PubMed DOI
Pistollato F., Canovas-Jorda D., Zagoura D., Bal-Price A. Nrf2 pathway activation upon rotenone treatment in human iPSC-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem. Int. 2017;108:457–471. PubMed
Rhinn M., Dollé P., Dolle P. Retinoic acid signalling during development. Development. 2012;139:843–858. doi: 10.1242/dev.065938. PubMed DOI
Robinson, J.F., 2014. Retinoids and developmental neurotoxicity in vivo and in vitro. https://www.oecd.org/chemicalsafety/testing/Retinoid%20CNSv2.pdf.
Rodier, P.M., 1995. Developing brain as a target of toxicity. Environmental health perspectives 103 Suppl, 73–76. https://doi.org/10.1289/EHP.95103S673. PubMed PMC
Rodriguez-Concepcion M., Avalos J., Bonet M.L., Boronat A., Gomez-Gomez L., Hornero-Mendez D., Limon M.C., Meléndez-Martínez A.J., Olmedilla-Alonso B., Palou A., Ribot J., Rodrigo M.J., Zacarias L., Zhu C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018 doi: 10.1016/j.plipres.2018.04.004. PubMed DOI
Rohwedel J., Guan K., Wobus A.M. Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs. 1999;165:190–202. doi: 10.1159/000016699. PubMed DOI
Rothwell C.M., Spencer G.E. Retinoid signaling is necessary for, and promotes long-term memory formation following operant conditioning. Neurobiol. Learn. Mem. 2014;114:127–140. doi: 10.1016/j.nlm.2014.05.010. PubMed DOI
Rydeen A., Voisin N., D’Aniello E., Ravisankar P., Devignes C.S., Waxman J.S., D’Aniello E., Ravisankar P., Devignes C.S., Waxman J.S. Excessive feedback of Cyp26a1 promotes cell non-autonomous loss of retinoic acid signaling. Dev. Biol. 2015;405:47–55. doi: 10.1016/j.ydbio.2015.06.008. PubMed DOI PMC
Sachana, M., Shafer, T.J., Terron, A., 2021a. Toward a better testing paradigm for developmental neurotoxicity: Oecd efforts and regulatory considerations. Biology 2021, Vol. 10, Page 86 10, 86. https://doi.org/10.3390/BIOLOGY10020086. PubMed PMC
Sachana M., Bal-Price A., Crofton K.M., Bennekou S.H., Shafer T.J., Behl M., Terron A. International regulatory and scientific effort for improved developmental neurotoxicity testing. Toxicol. Sci. 2019;167:45–57. doi: 10.1093/TOXSCI/KFY211. PubMed DOI
Sachana M., Willett C., Pistollato F., Bal-Price A. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod. Toxicol. 2021;103:159–170. doi: 10.1016/J.REPROTOX.2021.06.006. PubMed DOI PMC
Samarut, E., Fraher, D., Laudet, V., Gibert, Y., 2015. ZebRA: An overview of retinoic acid signaling during zebrafish development. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms. https://doi.org/10.1016/j.bbagrm.2014.05.030. PubMed
SCCS Opinion on vitamin A (retinol, retinyl acetate, retinyl palmitate). Final version of 6 October 2016, CORRIGENDUM on 23 December 2016. SCCS/1576/16. 2016:1–85. doi: 10.2875/642264. DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Sehnal L., Procházková T., Smutná M., Kohoutek J., Lepšová-Skácelová O., Hilscherová K. Widespread occurrence of retinoids in water bodies associated with cyanobacterial blooms dominated by diverse species. Water Res. 2019;156:136–147. doi: 10.1016/j.watres.2019.03.009. PubMed DOI
Shibata M., Pattabiraman K., Lorente-Galdos B., Andrijevic D., Kim S.K., Kaur N., Muchnik S.K., Xing X., Santpere G., Sousa A.M.M., Sestan N. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature. 2021 doi: 10.1038/s41586-021-03953-x. PubMed DOI PMC
Shirakami, Y., Lee, S.A., Clugston, R.D., Blaner, W.S., 2012. Hepatic metabolism of retinoids and disease associations. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. https://doi.org/10.1016/j.bbalip.2011.06.023. PubMed PMC
Smutna M., Vecerkova J., Priebojova J., Pipal M., Krauss M., Hilscherova K. Variability in retinoid-like activity of extracellular compound mixtures produced by wide spectra of phytoplankton species and contributing metabolites. J. Hazard. Mater. 2021;414 doi: 10.1016/j.jhazmat.2021.125412. PubMed DOI
Stavridis M.P., Collins B.J., Storey K.G. Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development. 2010;137:881–890. doi: 10.1242/dev.043117. PubMed DOI PMC
Tonk E.C.M., Pennings J.L.A., Piersma A.H. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis. Reprod. Toxicol. 2015;55:104–113. doi: 10.1016/j.reprotox.2014.10.008. PubMed DOI
Topletz A.R., Tripathy S., Foti R.S., Shimshoni J.A., Nelson W.L., Isoherranen N. Induction of CYP26A1 by metabolites of retinoic acid: evidence that CYP26A1 is an important enzyme in the elimination of active retinoids. Mol. Pharmacol. 2015;87:430–441. doi: 10.1124/mol.114.096784. PubMed DOI PMC
Tzimas G., Nau H., Hendrickx A.G., Peterson P.E., Hummler H. Retinoid metabolism and transplacental pharmacokinetics in the cynomolgus monkey following a nonteratogenic dosing regimen with all-trans-retinoic acid. Teratology. 1996;54:255–265. doi: 10.1002/(SICI)1096-9926(199611)54:5<255::AID-TERA6>3.0.CO;2-Z. PubMed DOI
Wendling O., Ghyselinck N.B., Chambon P., Mark M. Roles of retinoic acid receptors in early embryonic morphogenesis and hindbrain patterning. Development. 2001;128:2031–2038. PubMed
White R.J., Nie Q., Lander A.D., Schilling T.F. Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the Zebrafish Embryo. PLoS Biol. 2007;5 doi: 10.1371/journal.pbio.0050304. PubMed DOI PMC
WHO, 2013. Micronutrient deficiencies - Vitamin A deficiency [WWW Document]. WHO. URL https://www.who.int/nutrition/topics/vad/en/ (accessed 3.24.20).
Wondolowski J., Dickman D. Emerging links between homeostatic synaptic plasticity and neurological disease. Front. Cell. Neurosci. 2013 doi: 10.3389/fncel.2013.00223. PubMed DOI PMC
Yeung K.W.Y., Zhou G.-J., Hilscherová K., Giesy J.P., Leung K.M.Y. Current understanding of potential ecological risks of retinoic acids and their metabolites in aquatic environments. Environ. Int. 2020;136 doi: 10.1016/j.envint.2020.105464. PubMed DOI
Zagoura D., Canovas-Jorda D., Pistollato F., Bremer-Hoffmann S., Bal-Price A. Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells. Neurochem. Int. 2017;106:62–73. doi: 10.1016/J.NEUINT.2016.09.004. PubMed DOI
Zieger E., Schubert M. New insights into the roles of retinoic acid signaling in nervous system development and the establishment of neurotransmitter systems. Int. Rev. Cell Mol. Biol. 2017:1–84. doi: 10.1016/bs.ircmb.2016.09.001. PubMed DOI