The theoretical adhesion of Staphylococcus aureus and Pseudomonas aeruginosa as nosocomial pathogens on 3D printing filament materials
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36807129
DOI
10.1007/s12223-022-01028-6
PII: 10.1007/s12223-022-01028-6
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, Bacterial adhesion, Pseudomonas aeruginosa, Staphylococcus aureus,
- MeSH
- akrylonitril * MeSH
- bakteriální adheze MeSH
- biofilmy MeSH
- butadieny farmakologie MeSH
- infekce spojené se zdravotní péčí * MeSH
- lidé MeSH
- polyethylentereftaláty chemie MeSH
- Pseudomonas aeruginosa MeSH
- stafylokokové infekce * MeSH
- Staphylococcus aureus MeSH
- styreny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,3-butadiene MeSH Prohlížeč
- akrylonitril * MeSH
- butadieny MeSH
- polyethylentereftaláty MeSH
- styreny MeSH
Microbial infections and nosocomial diseases associated with biomaterial have become a major problem of public health and largely lead to revision surgery, which is painful and quite expensive for patients. These infections are caused by formation of biofilm, which present a difficulty of treatment with conventional antibiotics. The aim of our study is to investigate the theoretical adhesion of Staphylococcus aureus and Pseudomonas aeruginosa on four 3-dimensional printing filament materials used in the manufacture of medical equipment. Thus, the physicochemical properties of these microorganisms and all filament materials were determined using the contact angle measurements. Our results indicated that bacterial surfaces were hydrophilic, strongly electron donating and weakly electron accepting. In contrast, nylon, acrylonitrile butadiene-styrene, polyethylene terephthalate, and polylactic acid surfaces were hydrophobic and more electron-donor than electron-acceptor. In addition, according to the values of total free interaction energy ΔGTotal, Staphylococcus aureus was found unable to adhere to the filament materials except polyethylene terephthalate surface. However, Pseudomonas aeruginosa showed adhesion capacity only for acrylonitrile butadiene-styrene and polyethylene terephthalate surfaces. These findings imply that the usage of these 3D printed materials in the medical area necessitates more research into enhancing their resistance to bacterial adherence.
Zobrazit více v PubMed
Abdallah M, Benoliel C, Jama C et al (2014) Thermodynamic prediction of growth temperature dependence in the adhesion of Pseudomonas aeruginosa and Staphylococcus aureus to stainless steel and polycarbonate. 77:1116–1126. https://doi.org/10.4315/0362-028X.JFP-13-365
Anadioti E, Kane B, Soulas E (2018) Current and emerging applications of 3D printing in restorative Dentistry. Curr Oral Heal Reports 5:133–139. https://doi.org/10.1007/s40496-018-0181-3 DOI
Azelmad K, Hamadi F, Mimouni R et al (2018) Physicochemical characterization of Pseudomonas aeruginosa isolated from catering substratum surface and investigation of their theoretical adhesion. Surf Interfaces. https://doi.org/10.1016/j.surfin.2018.04.004 DOI
Barkai H, El abed Soumya, Sadiki M et al (2016) Antifungal activity and physico-chemical surface properties of the momentaneously exposed Penicillium expansum spores to carvacrol. Res J Microbiol 11:178–185. https://doi.org/10.3923/jm.2016.178.185 DOI
Blanco MT, Blanco J, Sanchez-Benito R et al (1997) Incubation temperatures affect adherence to plastic of Candida albicans by changing the cellular surface hydrophobicity. Microbios 89:23–28 PubMed
Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230. https://doi.org/10.1111/j.1574-6976.1999.tb00396.x PubMed DOI
Campoccia D, Montanaro L, Agheli H et al (2006) Study of Staphylococcus aureus adhesion on a novel nanostructured surface by chemiluminometry. Int J Artif Organs 29:622–629. https://doi.org/10.1177/039139880602900612
El Abed S, Hamadi F, Latrache H et al (2010) Adhesion of Aspergillus niger and Penicillium expansum spores on Fez cedar wood substrata. Ann Microbiol 60:377–382. https://doi.org/10.1007/s13213-010-0045-0 DOI
El Abed S, Ibnsouda K (2012) Environmental scanning electron microscopy characterization of the adhesion of conidia from Penicillium expansum to cedar wood substrata at different pH values. World J Microbiol Biotechnol 1707–1713. https://doi.org/10.1007/s11274-011-0980-3
El Abed S, Mostakim M, Berguadi F et al (2011) Study of microbial adhesion on some wood species: theoretical prediction. Microbiology 80:43–49. https://doi.org/10.1134/S0026261711010152 DOI
Elgoulli M, Aitlahbib O, Tankiouine S et al (2021) The theoretical adhesion of Pseudomonas aeruginosa and Escherichia coli on some plumbing materials in presence of distilled water or tap water. Folia Microbiol (Praha) 66:607–613. https://doi.org/10.1007/s12223-021-00868-y PubMed DOI
Fang J, Wang C, Li Y et al (2016) Comparison of bacterial adhesion to dental materials of polyethylene terephthalate (PET) and polymethyl methacrylate (PMMA) using atomic force microscopy and scanning electron microscopy. Scanning 38:665–670. https://doi.org/10.1002/sca.21314 PubMed DOI
Hall DC, Palmer P, Ji HF et al (2021) Bacterial biofilm growth on 3D-printed materials. Front Microbiol 12:1–13. https://doi.org/10.3389/fmicb.2021.646303 DOI
Hazrin-Chong NH, Das T, Manefield M (2021) Surface physico-chemistry governing microbial cell attachment and biofilm formation on coal. Int J Coal Geol 236:103671. https://doi.org/10.1016/j.coal.2020.103671 DOI
Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434 DOI
Jain P, Kuthe AM (2013) Feasibility study of manufacturing using rapid prototyping: FDM approach. In: Procedia Engineering. Elsevier Ltd 4–11
Kumar R, Singh R, Farina I (2018) On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications. PSU Res Rev 2:115–137. https://doi.org/10.1108/prr-07-2018-0018 DOI
Li JX, Wang J, Shen LR et al (2007) The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior. Surf Coatings Technol 201:8155–8159. https://doi.org/10.1016/j.surfcoat.2006.02.069 DOI
Popescu D, Zapciu A, Amza C et al (2018) FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test 69:157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020 DOI
Sadiki M, Elabed S, Barkai H et al (2017) The modification of cedar wood surface properties for the prevention of fungal adhesion. Int J Adhes Adhes 75:40–46. https://doi.org/10.1016/j.ijadhadh.2017.01.007 DOI
Sehnal K, Gargulak M, Ofomaja AE et al (2019) Biophysical analysis of silver nanoparticles prepared by green synthesis and their use for 3D printing of antibacterial material for health care. 2019 IEEE Int Conf Sensors Nanotechnology. SENSORS NANO 2019:24–25. https://doi.org/10.1109/SENSORSNANO44414.2019.8940081 DOI
Singh R, Kumar R, Ranjan N et al (2019) Sustainability of recycled ABS and PA6 by banana fiber reinforcement: thermal, mechanical and morphological properties. JIEIC 100:351–360. https://doi.org/10.1007/S40032-017-0435-1 DOI
Tatchou-Nyamsi-König JA, Dague E, Mullet M et al (2008) Adhesion of Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET) used for bottled waters. Water Res 42:4751–4760. https://doi.org/10.1016/j.watres.2008.09.009 PubMed DOI
van Oss CJ (2006) Interfacial forces in aqueous media. Interfacial Forces Aqueous Media, Second Ed 1–438
van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz—van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941. https://doi.org/10.1021/cr00088a006 DOI
van Oss CJ, Giese RF (1995) The hydrophilicity and hydrophobicity of clay minerals. Clays Clay Miner 43:474–477. https://doi.org/10.1346/CCMN.1995.0430411 DOI
Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74:69–117. https://doi.org/10.1016/S0001-8686(97)00040-7 PubMed DOI
Wang X, Jiang M, Zhou Z et al (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034 DOI
Wu CS, Liao HT (2017) Polyester-based green composites for three-dimensional printing strips: preparation, characterization and antibacterial properties. Polym Bull 74:2277–2295. https://doi.org/10.1007/s00289-016-1836-7 DOI