Bird preferences for fruit size, but not color, vary in accordance with fruit traits along a tropical elevational gradient
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
36818525
PubMed Central
PMC9929344
DOI
10.1002/ece3.9835
PII: ECE39835
Knihovny.cz E-resources
- Keywords
- Papua New Guinea, artificial fruits, community level, elevation, frugivory, gape width,
- Publication type
- Journal Article MeSH
Birds constitute one of the most important seed dispersal agents globally, especially in the tropics. The feeding preferences of frugivorous birds are, therefore, potentially of great ecological importance. A number of laboratory-based and observational studies have attempted to ascertain the preferences of certain bird species for certain fruit traits. However, little attention has been paid to community-wide preferences of frugivorous birds and the impact this may have on fruit traits on a broader scale. Here, we used artificial fruits of different colors and sizes to investigate community-wide fruit trait preferences of birds at three sites along an elevational gradient in Papua New Guinea. We recorded attack rates on artificial fruits as visible impressions made by a bird's beak during a feeding attempt. We also measured the colors and sizes of real fruits at each site, and the gape widths of frugivorous birds, allowing for comparisons between bird feeding preferences and bird and fruit traits. Regardless of elevation, red and purple fruits were universally preferred to green and attacked at similar rates to one another, despite strong elevational patterns in real fruit color. However, elevation had a significant effect on fruit size preferences. A weak, non-significant preference for large fruits was recorded at 700 m, while medium fruits were strongly preferred at 1700 m and small fruits at 2700 m. These patterns mirror those of both real fruit size and frugivorous bird gape width along the gradient, suggesting the potential for selective pressure of birds on fruit size at different elevations.
Biology Centre of Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
National Research and Innovation Agency Central Jakarta Indonesia
See more in PubMed
Albert, S. , Flores, O. , & Strasberg, D. (2020). Collapse of dispersal trait diversity across a long‐term chronosequence reveals a strong negative impact of frugivore extinctions on forest resilience. Journal of Ecology, 108(4), 1386–1397. 10.1111/1365-2745.13359 DOI
Alves‐Costa, C. P. , & Lopes, A. V. (2001). Using artificial fruits to evaluate fruit selection by birds in the field. Biotropica, 33(4), 713–717. 10.1111/j.1744-7429.2001.tb00230.x DOI
Amico, G. C. , Rodriguez‐Cabal, M. A. , & Aizen, M. A. (2011). Geographic variation in fruit colour is associated with contrasting seed disperser assemblages in a south‐Andean mistletoe. Ecography, 34(2), 318–326. 10.1111/j.1600-0587.2010.06459.x DOI
Arruda, R. , Rodrigues, D. J. , & Izzo, T. J. (2008). Rapid assessment of fruit‐color selection by birds using artificial fruits at local scale in Central Amazonia. Acta Amazonica, 38(2), 291–295. 10.1590/S0044-59672008000200011 DOI
Beckman, N. G. , & Muller‐Landau, H. C. (2011). Linking fruit traits to variation in predispersal vertebrate seed predation, insect seed predation, and pathogen attack. Ecology, 92(11), 2131–2140. 10.1890/10-2378.1 PubMed DOI
Beckman, N. G. , & Rogers, H. S. (2013). Consequences of seed dispersal for plant recruitment in tropical forests: Interactions within the seedscape. Biotropica, 45(6), 666–681. 10.1111/btp.12071 DOI
Bender, I. M. A. , Kissling, W. D. , Blendinger, P. G. , Böhning‐Gaese, K. , Hensen, I. , Kühn, I. , Muñoz, M. C. , Neuschulz, E. L. , Nowak, L. , Quitián, M. , Saavedra, F. , Santillán, V. , Töpfer, T. , Wiegand, T. , Dehling, D. M. , & Schleuning, M. (2018). Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography, 41(11), 1910–1919. 10.1111/ecog.03396 DOI
Bibby, C. J. , Burgess, N. D. , & Hill, D. A. (2000). Bird census techniques (2nd ed.). Elsevier. 10.1016/B978-0-12-095830-6.50015-8 DOI
Blomberg, S. P. , Garland, T. , & Ives, A. R. (2003). Signal in comparative data: Testing for phylogenetic behavioral traits are more labile. Evolution, 57(4), 717–745. PubMed
Burns, K. C. (2013). What causes size coupling in fruit–frugivore interaction webs? Ecology, 94(2), 295–300. PubMed
Burns, K. C. (2015). The color of plant reproduction: Macroecological trade‐offs between biotic signaling and abiotic tolerance. Frontiers in Ecology and Evolution, 3, 118. 10.3389/fevo.2015.00118 DOI
Cazetta, E. , Galetti, M. , Rezende, E. L. , & Schaefer, H. M. (2012). On the reliability of visual communication in vertebrate‐dispersed fruits. Journal of Ecology, 100(1), 277–286. 10.1111/j.1365-2745.2011.01901.x DOI
Chen, S. , Cornwell, W. K. , Zhang, H. , & Moles, A. T. (2016). Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography, 39, 1–8. 10.1111/ecog.02010 DOI
Chen, S. C. , & Moles, A. T. (2015). A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Global Ecology and Biogeography, 24(11), 1269–1280. 10.1111/geb.12346 DOI
Corlett, R. T. (1998). Frugivory and seed dispersal by veretebrates in the oriental (Indomalayan) region. Biological Reviews, 73, 413–448. PubMed
Corlett, R. T. (2011). How to be a frugivore (in a changing world). Acta Oecologica, 37(6), 674–681. 10.1016/j.actao.2011.01.005 DOI
Corlett, R. T. (2017). Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: An update. Global Ecology and Conservation, 11, 1–22. 10.1016/j.gecco.2017.04.007 DOI
de Assis Bomfim, J. , Guimarães, P. R. , Peres, C. A. , Carvalho, G. , & Cazetta, E. (2018). Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography, 41(11), 1899–1909. 10.1111/ecog.03592 DOI
Dehling, D. M. , Fritz, S. A. , Töpfer, T. , Päckert, M. , Estler, P. , Böhning‐gaese, K. , & Schleuning, M. (2014). Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography, 37, 1047–1055. 10.1111/ecog.00623 DOI
Dehling, D. M. , Töpfer, T. , Schaefer, H. M. , Jordano, P. , Böhning‐gaese, K. , & Schleuning, M. (2014). Functional relationships beyond species richness patterns: Trait matching in plant–bird mutualisms across scales. Global Ecology and Biogeography, 23, 1085–1093. 10.1111/geb.12193 DOI
Duan, Q. , Goodale, E. , & Quan, R. C. (2014). Bird fruit preferences match the frequency of fruit colours in tropical Asia. Scientific Reports, 4, 5627. 10.1038/srep05627 PubMed DOI PMC
Eriksson, O. (2016). Evolution of angiosperm seed disperser mutualisms: The timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biological Reviews, 91(1), 168–186. 10.1111/brv.12164 PubMed DOI
Ferger, S. W. , Dulle, H. I. , Schleuning, M. , & Böhning‐Gaese, K. (2016). Frugivore diversity increases frugivory rates along a large elevational gradient. Oikos, 125(2), 245–253. 10.1111/oik.02296 DOI
Foster, S. A. (1986). On the adaptive value of large seeds for tropical moist forest trees: A review and synthesis. The Botanical Review, 52(3), 260–299. 10.1007/BF02860997 DOI
Fox, J. , & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Sage.
Galetti, M. , Alves‐Costa, C. P. , & Cazetta, E. (2003). Effects of forest fragmentation, anthropogenic edges and fruit colour on the consumption of ornithocoric fruits. Biological Conservation, 111(2), 269–273. 10.1016/s0006-3207(02)00299-9 DOI
Garibaldi, L. A. , Bartomeus, I. , Bommarco, R. , Klein, A. M. , Cunningham, S. A. , Aizen, M. A. , Boreux, V. , Garratt, M. P. D. , Carvalheiro, L. G. , Kremen, C. , Morales, C. L. , Schüepp, C. , Chacoff, N. P. , Freitas, B. M. , Gagic, V. , Holzschuh, A. , Klatt, B. K. , Krewenka, K. M. , Krishnan, S. , … Woyciechowski, M. (2015). Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 52(6), 1436–1444. 10.1111/1365-2664.12530 DOI
Gautier‐Hion, A. , Duplantier, J. M. , Quris, R. , Feer, F. , Sourd, C. , Decoux, J. P. , Dubost, G. , Emmons, L. , Erard, C. , Hecketsweiler, P. , Moungazi, A. , Roussilhon, C. , & Thiollay, J. (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337. 10.1007/BF00378906 PubMed DOI
González‐Castro, A. , Yang, S. , Nogales, M. , & Carlo, T. A. (2015). Relative importance of phenotypic trait matching and species' abundances in determining plant—Avian seed dispersal interactions in a small insular community. AoB Plants, 7(1), 1–10. 10.1093/aobpla/plv017 PubMed DOI PMC
Guo, Q. , Kelt, D. A. , Sun, Z. , Liu, H. , Hu, L. , Ren, H. , & Wen, J. (2013). Global variation in elevational diversity patterns. Scientific Reports, 3, 1–7. 10.1038/srep03007 PubMed DOI PMC
Harms, K. E. , & Dalling, J. W. (1997). Damage and herbivory tolerance through resprouting as an advantage of large seed size in tropical trees and lianas. Journal of Tropical Ecology, 13(4), 617–621.
Harrison, R. D. , Tan, S. , Plotkin, J. B. , Slik, F. , Detto, M. , Brenes, T. , Itoh, A. , & Davies, S. J. (2013). Consequences of defaunation for a tropical tree community. Ecology Letters, 16(5), 687–694. 10.1111/ele.12102 PubMed DOI
Howe, H. F. , & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13(1), 201–228. 10.1146/annurev.es.13.110182.001221 DOI
Janson, C. H. (1983). Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science, 219(4581), 187–189. 10.1126/science.219.4581.187 PubMed DOI
Jordano, P. (1995). Frugivore‐mediated selection on fruit and seed size. Ecology, 76(8), 2627–2639.
Koenker, R. , Portnoy, S. , Ng, P. T. , Zeileis, A. , Grosjean, P. , & Ripley, B. D. (2019). Package ‘quantreg’. R Package version 5.52 . Retrieved from http://cran.r‐project.org/package=quantreg
Larrinaga, A. R. , & Guitián, P. (2016). Intraspecific variation in fruit size and shape in Corema album (Ericaceae) along a latitudinal gradient: From fruits to populations. Biological Journal of the Linnean Society, 118(4), 940–950. 10.1111/bij.12794 DOI
Lenth, R. , Singmann, H. , Love, J. , Buerkner, P. , & Herve, M. (2018). emmeans: Estimated marginal means, aka least‐squares means. R Package Version 1.2.3 . 10.1080/00031305.1980.10483031>.License DOI
Levey, D. J. , & Grajal, A. (1991). Evolutionary implications of fruit‐processing limitations in cedar waxwings. The American Naturalist, 138(1), 171–189.
Levin, S. A. , Muller‐Landau, H. C. , Nathan, R. , & Chave, J. (2003). The ecology and evolution of seed dispersal. Annual Review of Ecology, Evolution, and Systematics, 34(1), 575–604. 10.1146/annurev.ecolsys.34.011802.132428 DOI
Lomáscolo, S. B. , Speranza, P. , & Kimball, R. T. (2008). Correlated evolution of fig size and color supports the dispersal syndromes hypothesis. Oecologia, 156(4), 783–796. 10.1007/s00442-008-1023-0 PubMed DOI
Lopes Souza, M. , & Fagundes, M. (2014). Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences, 5(17), 2566–2573. 10.4236/ajps.2014.517270 DOI
Lord, J. M. (2004). Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecology, 29(4), 430–436. 10.1111/j.1442-9993.2004.01382.x DOI
Lu, L. , Fritsch, P. W. , Matzke, N. J. , Wang, H. , Kron, K. A. , Li, D. Z. , & Wiens, J. J. (2019). Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit‐colour evolution, biogeography and diversification. Global Ecology and Biogeography, 28, 891–903. 10.1111/geb.12900 DOI
Mack, A. L. (1998). An advantage of large seed size: Tolerating rather than succumbing to seed predators. Biotropica, 30(4), 604–608. 10.1111/j.1744-7429.1998.tb00100.x DOI
Marki, P. Z. , Sam, K. , Koane, B. , Bolding Kristensen, J. , Kennedy, J. D. , & Jønsson, K. A. (2016). New and noteworthy bird records from the Mt. Wilhelm elevational gradient, Papua New Guinea. Bulletin of the British Ornithologists Club, 136(4), 263–271.
Mazer, S. J. , & Wheelwright, N. T. (1993). Fruit size and shape—Allometry at different taxonomic levels in bird‐dispersed plants. Evolutionary Ecology, 7(6), 556–575. 10.1007/bf01237821 DOI
McConkey, K. R. , Prasad, S. , Corlett, R. T. , Campos‐Arceiz, A. , Brodie, J. F. , Rogers, H. , & Santamaria, L. (2012). Seed dispersal in changing landscapes. Biological Conservation, 146(1), 1–13. 10.1016/j.biocon.2011.09.018 DOI
McPherson, J. M. (1988). Preferences of cedar waxwings in the laboratory for fruit species, colour and size: A comparison with field observations. Animal Behaviour, 36(4), 961–969. 10.1016/S0003-3472(88)80054-X DOI
Muller‐Landau, H. C. , & Hardesty, B. D. (2005). Seed dispersal of woody plants in tropical forests: Concepts, examples and future directions. In Burslem D. F. R. P., Pinard M. A., & Hartley S. (Eds.), Biotic interactions in the tropics (pp. 267–309). Cambridge University Press. 10.1017/cbo9780511541971.012 DOI
Muñoz, M. C. , Schaefer, H. M. , Böhning‐Gaese, K. , & Schleuning, M. (2017). Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos, 126(6), 823–832. 10.1111/oik.03547 DOI
Murray, B. R. , & Gill, A. M. (2008). A comparative study of interspecific variation in fruit size among Australian eucalypts. Ecography, 24(6), 651–658. 10.1111/j.1600-0587.2001.tb00527.x DOI
Nevo, O. , Valenta, K. , Razafimandimby, D. , Melin, A. D. , Ayasse, M. , & Chapman, C. A. (2018). Frugivores and the evolution of fruit colour. Biology Letters, 14(9), 20180377. 10.1098/rsbl.2018.0377 PubMed DOI PMC
Onstein, R. E. , Baker, W. J. , Couvreur, T. L. P. , Faurby, S. , Svenning, J. C. , & Kissling, W. D. (2017). Frugivory‐related traits promote speciation of tropical palms. Nature Ecology and Evolution, 1, 1903–1911. 10.1038/s41559-017-0348-7 PubMed DOI
Ordano, M. , Blendinger, P. G. , Lomáscolo, S. B. , Chacoff, N. P. , Sánchez, M. S. , Núñez Montellano, M. G. , Jiménez, J. , Ruggera, R. A. , & Valoy, M. (2017). The role of trait combination in the conspicuousness of fruit display among bird‐dispersed plants. Functional Ecology, 31(9), 1718–1727. 10.1111/1365-2435.12899 DOI
Paijmans, K. (1976). New Guinea vegetation. Australia National University Press. 10.2307/2806485 DOI
Palacio, R. D. , Valderrama‐Ardila, C. , & Kattan, G. H. (2016). Generalist species have a central role in a highly diverse plant‐frugivore network. Biotropica, 48(3), 349–355. 10.1111/btp.12290 DOI
Pizo, M. A. , Von Allmen, C. , & Morellato, L. P. C. (2006). Seed size variation in the palm Euterpe edulis and the effects of seed predators on germination and seedling survival. Acta Oecologica, 29(3), 311–315. 10.1016/j.actao.2005.11.011 DOI
Pratt, T. K. , & Beehler, B. M. (2015). Birds of New Guinea (2nd ed.). Princeton University Press. 10.1515/9781400865116 DOI
Puckey, H. L. , Lill, A. , & O'Dowd, D. J. (1996). Fruit color choices of captive silvereyes (Zosterops lateralis). The Condor, 98(4), 780–790. 10.2307/1369858 DOI
Rausher, M. D. (2008). Evolutionary transitions in floral color. International Journal of Plant Sciences, 169(1), 7–21. 10.1086/523358 DOI
Rey, P. J. , & Gutierrez, J. E. (1996). Pecking of olives by frugivorous birds: A shift in feeding behaviour to overcome gape limitation. Journal of Avian Biology, 27(4), 327–333. 10.2307/3677264 DOI
Sallabanks, R. (1993). Hierarchical mechanisms of fruit selection by an avian frugivore. Ecology, 74(5), 1326–1336.
Sam, K. , & Koane, B. (2014). New avian records along the elevational gradient of Mt. Wilhelm, Papua New Guinea. Bulletin of the British Ornithologists Club, 134(134), 116–133.
Sam, K. , Koane, B. , Bardos, D. C. , Jeppy, S. , & Novotny, V. (2019). Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. Journal of Biogeography, 46(2), 279–290. 10.1111/jbi.13482 DOI
Sam, K. , Koane, B. , Jeppy, S. , Sykorova, J. , & Novotny, V. (2017). Diet of land birds along an elevational gradient in Papua New Guinea. Scientific Reports, 7, 1–10. 10.1038/srep44018 PubMed DOI PMC
Sam, K. , Koane, B. , & Novotny, V. (2015). Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography, 38(3), 293–300. 10.1111/ecog.00979 DOI
Schaefer, H. M. , McGraw, K. , & Catoni, C. (2008). Birds use fruit colour as honest signal of dietary antioxidant rewards. Functional Ecology, 22(2), 303–310. 10.1111/j.1365-2435.2007.01363.x DOI
Schaefer, H. M. , & Ruxton, G. D. (2011). Plant‐animal communication. Oxford University Press.
Schaefer, H. M. , Valido, A. , & Jordano, P. (2014). Birds see the true colours of fruits to live off the fat of the land. Proceedings of the Royal Society B: Biological Sciences, 281(1777), 20132516. 10.1098/rspb.2013.2516 PubMed DOI PMC
Schleuning, M. , Blüthgen, N. , Flörchinger, M. , Braun, J. , Schaefer, H. M. , & Böhning‐Gaese, K. (2011). Specialization and interaction strength in a tropical plant—Frugivore network differ among forest strata. Ecology, 92(1), 26–36. 10.1890/09-1842.1 PubMed DOI
Schmidt, V. , Schaefer, H. M. , & Winkler, H. (2004). Conspicuousness, not colour as foraging cue in plant‐animal interactions. Oikos, 106, 551–557.
Shanahan, M. , & Compton, S. G. (2001). Vertical stratification of figs and fig‐eaters in a Bornean lowland rain forest: How is the canopy different? Plant Ecology, 153, 121–132. 10.1023/A DOI
Siitari, H. , Honkavaara, J. , & Viitala, J. (1999). Ultraviolet reflection of berries attracts foraging birds. A laboratory study with redwings (Turdus iliacus) and bilberries (Vaccinium myrtillus). Proceedings of the Royal Society B: Biological Sciences, 266(1433), 2125–2129. 10.1098/rspb.1999.0897 DOI
Simmons, B. I. , Sutherland, W. J. , Dicks, L. V. , Albrecht, J. , Farwig, N. , García, D. , Jordano, P. , & González‐Varo, J. P. (2018). Moving from frugivory to seed dispersal: Incorporating the functional outcomes of interactions in plant–frugivore networks. Journal of Animal Ecology, 87(4), 995–1007. 10.1111/1365-2656.12831 PubMed DOI PMC
Smith, A. D. , & McWilliams, S. R. (2014). Fruit removal rate depends on neighborhood fruit density, frugivore abundance, and spatial context. Oecologia, 174(3), 931–942. 10.1007/s00442-013-2834-1 PubMed DOI
Snell, R. S. , Beckman, N. G. , Fricke, E. , Loiselle, B. A. , Carvalho, C. S. , Jones, L. R. , Lichti, N. I. , Lustenhouwer, N. , Schreiber, S. J. , Strickland, C. , Sullivan, L. L. , Cavazos, B. R. , Giladi, I. , Hastings, A. , Holbrook, K. M. , Jongejans, E. , Kogan, O. , Montaño‐Centellas, F. , Rudolph, J. , … Schupp, E. (2019). Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution, and global change. AoB Plants, 11, plz016. 10.1093/aobpla/plz016 PubMed DOI PMC
Sobral, M. , Larrinaga, A. R. , & Guitián, J. (2010a). Do seed‐dispersing birds exert selection on optimal plant trait combinations? Correlated phenotypic selection on the fruit and seed size of hawthorn (Crataegus monogyna). Evolutionary Ecology, 24(6), 1277–1290. 10.1007/s10682-010-9380-7 DOI
Sobral, M. , Larrinaga, A. R. , & Guitián, J. (2010b). Fruit‐size preferences in wild and naive eurasian blackbirds (Turdus merula) feeding on oneseed hawthorn (Crataegus monogyna). The Auk, 127(3), 532–539. 10.1525/auk.2010.09079 DOI
Stournaras, K. E. , Lo, E. , Böhning‐Gaese, K. , Cazetta, E. , Matthias Dehling, D. , Schleuning, M. , Caswell Stoddard, M. , Donoghue, M. J. , Prum, R. O. , & Schaefer, M. H. (2013). How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist, 198(2), 617–629. 10.1111/nph.12157 PubMed DOI
Swenson, N. G. , Anglada‐Cordero, P. , & Barone, J. A. (2011). Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B: Biological Sciences, 278(1707), 877–884. 10.1098/rspb.2010.1369 PubMed DOI PMC
Terborgh, J. (1977). Bird species diversity on an Andean elevational gradient. Ecology, 58(5), 1007–1019. 10.2307/1936921 DOI
Valenta, K. , Kalbitzer, U. , Razafimandimby, D. , Omeja, P. , Ayasse, M. , Chapman, C. A. , & Nevo, O. (2018). The evolution of fruit colour: Phylogeny, abiotic factors and the role of mutualists. Scientific Reports, 8(1), 14302. 10.1038/s41598-018-32604-x PubMed DOI PMC
Wheelwright, N. T. (1985). Fruit size, gape width, and the diets of fruit‐eating birds. Ecology, 66(3), 808–818. 10.2307/1940542 DOI
Wheelwright, N. T. , & Janson, C. H. (1985). Colors of fruit displays of bird‐dispersed plants in two tropical forests. The American Naturalist, 126(6), 777–799.
White, E. P. , Ernest, S. K. M. , Kerkhoff, A. J. , & Enquist, B. J. (2007). Relationships between body size and abundance in ecology. Trends in Ecology and Evolution, 22(6), 323–330. 10.1016/j.tree.2007.03.007 PubMed DOI
Willson, M. F. , Graff, D. A. , & Whelan, C. J. (1990). Color preferences of frugivorous birds in relation to the colors of fleshy fruits. The Condor, 92(3), 545–555. 10.1108/ilds.2002.12230dab.004 DOI
Willson, M. F. , Irvine, A. K. , & Walsh, N. G. (1989). Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica, 21(2), 133–147.
Wotton, D. M. , & Kelly, D. (2012). Do larger frugivores move seeds further? Body size, seed dispersal distance, and a case study of a large, sedentary pigeon. Journal of Biogeography, 39(11), 1973–1983. 10.1111/jbi.12000 DOI
Zoratti, L. , Jaakola, L. , Häggman, H. , & Giongo, L. (2015). Anthocyanin profile in berries of wild and cultivated vaccinium spp. along altitudinal gradients in the alps. Journal of Agricultural and Food Chemistry, 63(39), 8641–8650. 10.1021/acs.jafc.5b02833 PubMed DOI
figshare
10.6084/m9.figshare.c.6410138