Diversity, distribution and organic substrates preferences of microbial communities of a low anthropic activity cave in North-Western Romania
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36825091
PubMed Central
PMC9941645
DOI
10.3389/fmicb.2023.962452
Knihovny.cz E-zdroje
- Klíčová slova
- amplicon sequencing, cave ecosystems, community-level physiological profiles, karst cave, microbial communities,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Karst caves are characterized by relatively constant temperature, lack of light, high humidity, and low nutrients availability. The diversity and functionality of the microorganisms dwelling in caves micro-habitats are yet underexplored. Therefore, in-depth investigations of these ecosystems aid in enlarging our understanding of the microbial interactions and microbially driven biogeochemical cycles. Here, we aimed at evaluating the diversity, abundance, distribution, and organic substrate preferences of microbial communities from Peștera cu Apă din Valea Leșului (Leșu Cave) located in the Apuseni Mountains (North-Western Romania). MATERIALS AND METHODS: To achieve this goal, we employed 16S rRNA gene amplicon sequencing and community-level physiological profiling (CLPP) paralleled by the assessment of environmental parameters of cave sediments and water. RESULTS AND DISCUSSION: Pseudomonadota (synonym Proteobacteria) was the most prevalent phylum detected across all samples whereas the abundance detected at order level varied among sites and between water and sediment samples. Despite the general similarity at the phylum-level in Leșu Cave across the sampled area, the results obtained in this study suggest that specific sites drive bacterial community at the order-level, perhaps sustaining the enrichment of unique bacterial populations due to microenvironmental conditions. For most of the dominant orders the distribution pattern showed a positive correlation with C-sources such as putrescine, γ-amino butyric acid, and D-malic acid, while particular cases were positively correlated with polymers (Tween 40, Tween 80 and α-cyclodextrin), carbohydrates (α-D-lactose, i-erythritol, D-mannitol) and most of the carboxylic and ketonic acids. Physicochemical analysis reveals that sediments are geochemically distinct, with increased concentration of Ca, Fe, Al, Mg, Na and K, whereas water showed low nitrate concentration. Our PCA indicated the clustering of different dominant orders with Mg, As, P, Fe, and Cr. This information serves as a starting point for further studies in elucidating the links between the taxonomic and functional diversity of subterranean microbial communities.
Centro Nacional de Investigación sobre la Evolución Humana CENIEH Burgos Spain
Emil Racovita Institute of Speleology Cluj Napoca Department Cluj Napoca Romania
INCDO INOE 2000 Research Institute for Analytical Instrumentation Cluj Napoca Romania
Institute for Research Development and Innovation in Applied Natural Sciences Cluj Napoca Romania
Romanian Institute of Science and Technology Cluj Napoca Romania
Zoological Museum Babeș Bolyai University Cluj Napoca Romania
Zobrazit více v PubMed
Addesso R., Gonzalez-Pimentel J. L., D’Angeli I. M., De Waele J., Saiz-Jimenez C., Jurado V., et al. . (2021). Microbial community characterizing vermiculations from karst caves and its role in their formation. Microb. Ecol. 81, 884–896. doi: 10.1007/s00248-020-01623-5, PMID: PubMed DOI PMC
Adetutu E. M., Thorpe K., Shahsavari E., Bourne S., Cao X., Fard R. M. N., et al. . (2012). Bacterial community survey of sediments at Naracoorte Caves, Australia. Int. J. Speleol. 41, 137–147. doi: 10.5038/1827-806X.41.2.2 DOI
Alonso L., Creuzé-Des-Châtelliers C., Trabac T., Dubost A., Moënne-Loccoz Y., Pommier T. (2018). Rock substrate rather than black stain alterations drives microbial community structure in the passage of Lascaux Cave. Microbiome 6:216. doi: 10.1186/s40168-018-0599-9, PMID: PubMed DOI PMC
Barton H. A., Northup D. E. (2007). Geomicrobiology in cave environments: past, current and future perspectives. J Caves Karst Stud. 69, 163–178.
Bastian F., Alabouvette C., Jurado V., Saiz-Jimenez C. (2009). Impact of biocide treatments on the bacterial communities of the Lascaux Cave. Naturwissenschaften 96, 863–868. doi: 10.1007/s00114-009-0540-y, PMID: PubMed DOI
Bercea S., Năstase-Bucur R., Mirea I. C., Măntoiu D. Ş., Kenesz M., Petculescu A., et al. . (2018). Novel approach to microbiological air monitoring in show caves. Aerobiologia 34, 445–468. doi: 10.1007/s10453-018-9523-9 DOI
Bercea S., Năstase-Bucur R., Moldovan O. T., Kenesz M., Constantin S. (2019). Yearly microbial cycle of human exposed surfaces in show caves. Subterr. Biol. 31, 1–14. doi: 10.3897/subtbiol.31.34490 DOI
Borda D. R., Năstase-Bucur R. M., Spinu M., Uricariu R., Mulec J. (2014). Aerosolized microbes from organic rich materials: case study of bat guano from caves in Romania. J. Caves Karst Stud. 76, 114–126. doi: 10.4311/2013MB0116 DOI
Bücs S. L., Jére C., Csősz I., Barti L., Szodoray-Parády F. (2012). Distribution and conservation status of cave-dwelling bats in the Romanian Western Carpathians. Vespertilio 16, 97–113.
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869, PMID: PubMed DOI PMC
Chen R. W., He Y. Q., Cui L. Q., Li C., Shi S. B., Long L. J., et al. . (2021). Diversity and distribution of uncultured and cultured Gaiellales and Rubrobacterales in South China Sea sediments. Front. Microbiol. 12:657072. doi: 10.3389/fmicb.2021.657072, PMID: PubMed DOI PMC
Chen M., Xu P., Zeng G., Yang C., Huang D., Zhang J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol. Adv. 33, 745–755. doi: 10.1016/j.biotechadv.2015.05.003, PMID: PubMed DOI
Coutinho P. M., Deleury E., Davies G. J., Henrissat B. (2003). An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317. doi: 10.1016/S0022-2836(03)00307-3, PMID: PubMed DOI
Cuezva S., Sanchez-Moral S., Saiz-Jimenez C., Cañaveras J. C. (2009). Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int. J. Speleol. 38, 83–92. doi: 10.5038/1827-806X.38.1.9 DOI
Cunrath O., Bumann D. (2019). Host resistance factor SLC11A1 restricts salmonella growth through magnesium deprivation. Science 366, 995–999. doi: 10.1126/science.aax7898, PMID: PubMed DOI
De Bruin S., Vasquez-Cardenas D., Sarbu S. M., Meysman Sousa D. Z., Van Loosdrecht M. C. M., Lin Y. (2022). Sulfated glycosaminoglycan-like polymers are present in an acidophilic biofilm from a sulfidic cave. Sci. Total Environ. 829:154472. doi: 10.1016/j.scitotenv.2022.154472, PMID: PubMed DOI
De Mandal S., Chatterjee R., Kumar N. S. (2017). Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol. 17:90. doi: 10.1186/s12866-017-1002-x, PMID: PubMed DOI PMC
Dedysh S. N., Yilmaz P. (2018). Refining the taxonomic structure of the phylum Acidobacteria. Int. J. Syst. Evol. Microbiol. 68, 3796–3806. doi: 10.1099/ijsem.0.003062, PMID: PubMed DOI
Epure L., Meleg I. N., Munteanu C. M., Roban R. D., Moldovan O. T. (2014). Bacterial and fungal diversity of quaternary cave sediment deposits. Geomicrobiol J. 31, 116–127. doi: 10.1080/01490451.2013.815292 DOI
Gan H. M., Wengert P., Barton H. A., Hudson A. O., Savka M. A. (2020). Insight into the resistome and quorum sensing system of a divergent Acinetobacter pittii isolate from an untouched site of the Lechuguilla Cave. Access Microbiol. 2:acmi000089. doi: 10.1099/acmi.0.000089, PMID: PubMed DOI PMC
Garland J. L. (2006). Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. 24, 289–300. doi: 10.1111/j.1574-6941.1997.tb00446.x DOI
Garland M., Mills A. L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351–2359. doi: 10.1128/aem.57.8.2351-2359.1991, PMID: PubMed DOI PMC
Heberle H., Meirelles V. G., da Silva F. R., Telles G. P., Minghim R. (2015). Interacti Venn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16:169. doi: 10.1186/s12859-015-0611-3, PMID: PubMed DOI PMC
Hershey O. S., Kallmeyer J., Wallace A., Barton M. D., Barton H. A. (2018). High microbial diversity despite extremely low biomass in a deep karst aquifer. Front. Microbiol. 9:2823. doi: 10.3389/fmicb.2018.02823, PMID: PubMed DOI PMC
Howarth F. G., Moldovan O. T. (2018). “The ecological classification of cave animals and their adaptations” in Cave Ecology. eds. Moldovan O. T., Kovác L., Halse S. (Cham: Springer; ), 41–67.
Iţcuş C., Pascu M. D., Brad T., Perşoiu A., Purcarea C. (2016). Diversity of cultured bacteria from the perennial ice block of Scărişoara Ice Cave, Romania. Int. J. Speleol. 45, 89–100. doi: 10.5038/1827-806x.45.1.1948 DOI
Jurado V., Gonzalez-Pimentel J. L., Miller A. Z., Hermosin B., D’Angeli I. M., Tognini P., et al. . (2020). Microbial communities in vermiculation deposits from an Alpine Cave. Front. Earth Sci. 8:586248. doi: 10.3389/feart.2020.586248 DOI
Kenarova A., Radeva G., Traykov I., Boteva S. (2014). Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites. Ecotoxicol. Environ. Saf. 100, 226–232. doi: 10.1016/j.ecoenv.2013.11.012, PMID: PubMed DOI
Koner S., Chen J. S., Hsu B. M., Tan C. W., Fan C. W., Chen T. H., et al. . (2021). Assessment of carbon substrate catabolism pattern and functional metabolic pathway for microbiota of limestone caves. Microorganisms 9:1789. doi: 10.3390/microorganisms9081789, PMID: PubMed DOI PMC
Koren O., Rosenberg E. (2008). Bacteria associated with the bleached and cave coral Oculina patagonica. Microb. Ecol. 55, 523–529. doi: 10.1007/s00248-007-9297-z, PMID: PubMed DOI
Laiz L., Groth I., Gonzalez I., Saiz-Jimenez C. (1999). Microbiological study of the dripping waters in Altamira Cave (Santillana del Mar, Spain). J. Microbiol. Methods 36, 129–138. doi: 10.1016/S0167-7012(99)00018-4, PMID: PubMed DOI
Lavoie K. H., Winter A. S., Read K. J. H., Hughes E. M., Spilde M. N., Northup D. E. (2017). Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA. PLoS One 12:e0169339. doi: 10.1371/journal.pone.0169339, PMID: PubMed DOI PMC
Lehman R. M., Colwell F. S., Ringelbergb D. B., White D. C. (1995). Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. J. Microbiol. Methods 22, 263–281. doi: 10.1016/0167-7012(95)00012-A DOI
Li M., Fang C., Kawasaki S., Huang M., Achal V. (2019). Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a karst cave. Int. Biodeterior. Biodegradation 141, 94–100. doi: 10.1016/j.ibiod.2018.03.008 DOI
Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17:10. doi: 10.14806/ej.17.1.200 DOI
McMurdie P. J., Holmes S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217, PMID: PubMed DOI PMC
Moldovan O. T., Bercea S., Năstase-Bucur R., Constantin S., Kenesz M., Mirea I. C., et al. . (2020). Management of water bodies in show caves – a microbial approach. Tour. Manag. 78:104037. doi: 10.1016/j.tourman.2019.104037 DOI
Norris P. R., Davis-Belmar C. S., Brown C. F., Calvo-Bado L. A. (2011). Autotrophic, sulfur-oxidizing actinobacteria in acidic environments. Extremophiles 15, 155–163. doi: 10.1007/s00792-011-0358-3, PMID: PubMed DOI
Oliveira C., Gunderman L., Coles C. A., Lochmann J., Parks M., Ballard E., et al. . (2017). 16S rRNA gene-based metagenomic analysis of Ozark cave bacteria. Diversity 9:31. doi: 10.3390/d9030031, PMID: PubMed DOI PMC
Onac B. P., Goran C. (2019). “Karst and Caves of Romania: A Brief Overview” in Cave and Karst Systems of Romania. eds. Ponta G. M. I., Onac B. (Cham: Springer; ), 21–35.
Ortiz M., Neilson J. W., Nelson W. M., Legatzki A., Byrne A., Yu Y., et al. . (2013). Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner caverns, AZ. Microb. Ecol. 65, 371–383. doi: 10.1007/s00248-012-0143-6, PMID: PubMed DOI
Parks D. H., Tyson G. W., Hugenholtz P., Beiko R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124. doi: 10.1093/bioinformatics/btu494, PMID: PubMed DOI PMC
Paun V. I., Icaza G., Lavin P., Marin C., Tudorache A., Persoiu A., et al. . (2019). Total and potentially active bacterial communities entrapped in a late glacial through holocene ice core from Scarisoara Ice Cave, Romania. Front. Microbiol. 10:1193. doi: 10.3389/fmicb.2019.01193, PMID: PubMed DOI PMC
Preiss J., Romeo T. (1994). Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 47, 299–329. doi: 10.1016/S0079-6603(08)60255-X PubMed DOI
Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., et al. . (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196. doi: 10.1093/nar/gkm864, PMID: PubMed DOI PMC
Rangseekaew P., Pathom-Aree W. (2019). Cave actinobacteria as producers of bioactive metabolites. Front. Microbiol. 10:387. doi: 10.3389/fmicb.2019.00387, PMID: PubMed DOI PMC
Rapala J., Berg K. A., Lyra C., Niemi R. M., Manz W., Suomalainen S., et al. . (2005). Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int. J. Syst. Evol. Microbiol. 55, 1563–1568. doi: 10.1099/ijs.0.63599-0 PubMed DOI
Riquelme C., Hathaway J. J. M., Dapkevicius M. D. L. N. E., Miller A. Z., Kooser A., Northup D. E., et al. . (2015). Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Front. Microbiol. 6:1342. doi: 10.3389/fmicb.2015.01342, PMID: PubMed DOI PMC
Rusu T. (1988). “Carstul din muntii padurea craiului” in par Teodor Rusu. eds. Dacia Cluj-Napoca. (L e karst des Monts Padurea Craiului; ).
Sanyal A., Antony R., Samui G., Thamban M. (2018). Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol. Res. 208, 32–42. doi: 10.1016/j.micres.2018.01.004, PMID: PubMed DOI
Sarbu S. M., Kane T. C., Kinkle B. K. (1996). A chemoautotrophically based cave ecosystem. Science 272, 1953–1955. doi: 10.1126/science.272.5270.1953, PMID: PubMed DOI
Sathya A., Vijayabharathi R., Gopalakrishnan S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7:102. doi: 10.1007/s13205-017-0736-3, PMID: PubMed DOI PMC
Sjöberg S., Stairs C. W., Allard B., Homa F., Martin T., Sjöberg V., et al. . (2020). Microbiomes in a manganese oxide producing ecosystem in the Ytterby mine, Sweden: impact on metal mobility. FEMS Microbiol. 96:fiaa169. doi: 10.1093/femsec/fiaa169, PMID: PubMed DOI PMC
Song B., Leff L. G. (2006). Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol. Res. 161, 355–361. doi: 10.1016/j.micres.2006.01.004, PMID: PubMed DOI
Stetzenbach L. D., Kelley L. M., Sinclair N. A. (1986). Isolation, identification, and growth of well water bacteria. Ground Water 24, 6–10. doi: 10.1111/j.1745-6584.1986.tb01452.x DOI
Tomczyk-Żak K., Zielenkiewicz U. (2016). Microbial diversity in caves. Geomicrobiol J. 33, 20–38. doi: 10.1080/01490451.2014.1003341 DOI
Tomova I., Lazarkevich I., Tomova A., Kambourova M., Vasileva-Tonkova E. (2013). Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. Int. J. Speleol. 42, 65–76. doi: 10.5038/1827-806X.42.1.8 DOI
Wang T., Flint S., Palmer J. (2019). Magnesium and calcium ions: roles in bacterial cell attachment and biofilm structure maturation. Biofouling 35, 959–974. doi: 10.1080/08927014.2019.1674811, PMID: PubMed DOI
Wu X., Peng J., Liu P., Bei Q., Rensing C., Li Y., et al. . (2021). Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Sci. Total Environ. 785:147329. doi: 10.1016/j.scitotenv.2021.147329, PMID: PubMed DOI
Wu Y., Tan L., Liu W., Wang B., Wang J., Cai Y., et al. . (2015). Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. Front. Microbiol. 6:244. doi: 10.3389/fmicb.2015.00244, PMID: PubMed DOI PMC
Wu H., Zhang Q., Chen X., Wang L., Luo W., Zhang Z., et al. . (2021). Effect of HRT and BDPs types on nitrogen removal and microbial community of solid carbon source SND process treating low carbon/nitrogen domestic wastewater. J. Water Process Eng. 40:101854. doi: 10.1016/j.jwpe.2020.101854 DOI
Yang Z. N., Liu Z. S., Wang K. H., Liang Z. L., Abdugheni R., Huang Y., et al. . (2022). Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites. Environ. Sci. Ecotechnol. 10:100169. doi: 10.1016/j.ese.2022.100169, PMID: PubMed DOI PMC
Zada S., Xie J., Yang M., Yang X., Sajjad W., Rafiq M., et al. . (2021). Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves. Appl. Microbiol. Biotechol. 105, 8921–8936. doi: 10.1007/s00253-021-11658-4, PMID: PubMed DOI
Zecchin S., Corsini A., Martin M., Cavalca L. (2017). Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies. App. Microbiol. Biotechnol. 101, 6725–6738. doi: 10.1007/s00253-017-8382-6, PMID: PubMed DOI
Zhu H. Z., Zhang Z. F., Zhou N., Jiang C. Y., Wang B. J., Cai L., et al. . (2019). Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system. Front. Microbiol. 10:1726. doi: 10.3389/fmicb.2019.01726, PMID: PubMed DOI PMC
Zoltan L., Szántó L. (2003). Bats of the Carpathian Region. Acta Chiropt. 5, 155–160. doi: 10.3161/001.005.0115 DOI