Diversity, distribution and organic substrates preferences of microbial communities of a low anthropic activity cave in North-Western Romania

. 2023 ; 14 () : 962452. [epub] 20230207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36825091

INTRODUCTION: Karst caves are characterized by relatively constant temperature, lack of light, high humidity, and low nutrients availability. The diversity and functionality of the microorganisms dwelling in caves micro-habitats are yet underexplored. Therefore, in-depth investigations of these ecosystems aid in enlarging our understanding of the microbial interactions and microbially driven biogeochemical cycles. Here, we aimed at evaluating the diversity, abundance, distribution, and organic substrate preferences of microbial communities from Peștera cu Apă din Valea Leșului (Leșu Cave) located in the Apuseni Mountains (North-Western Romania). MATERIALS AND METHODS: To achieve this goal, we employed 16S rRNA gene amplicon sequencing and community-level physiological profiling (CLPP) paralleled by the assessment of environmental parameters of cave sediments and water. RESULTS AND DISCUSSION: Pseudomonadota (synonym Proteobacteria) was the most prevalent phylum detected across all samples whereas the abundance detected at order level varied among sites and between water and sediment samples. Despite the general similarity at the phylum-level in Leșu Cave across the sampled area, the results obtained in this study suggest that specific sites drive bacterial community at the order-level, perhaps sustaining the enrichment of unique bacterial populations due to microenvironmental conditions. For most of the dominant orders the distribution pattern showed a positive correlation with C-sources such as putrescine, γ-amino butyric acid, and D-malic acid, while particular cases were positively correlated with polymers (Tween 40, Tween 80 and α-cyclodextrin), carbohydrates (α-D-lactose, i-erythritol, D-mannitol) and most of the carboxylic and ketonic acids. Physicochemical analysis reveals that sediments are geochemically distinct, with increased concentration of Ca, Fe, Al, Mg, Na and K, whereas water showed low nitrate concentration. Our PCA indicated the clustering of different dominant orders with Mg, As, P, Fe, and Cr. This information serves as a starting point for further studies in elucidating the links between the taxonomic and functional diversity of subterranean microbial communities.

Zobrazit více v PubMed

Addesso R., Gonzalez-Pimentel J. L., D’Angeli I. M., De Waele J., Saiz-Jimenez C., Jurado V., et al. . (2021). Microbial community characterizing vermiculations from karst caves and its role in their formation. Microb. Ecol. 81, 884–896. doi: 10.1007/s00248-020-01623-5, PMID: PubMed DOI PMC

Adetutu E. M., Thorpe K., Shahsavari E., Bourne S., Cao X., Fard R. M. N., et al. . (2012). Bacterial community survey of sediments at Naracoorte Caves, Australia. Int. J. Speleol. 41, 137–147. doi: 10.5038/1827-806X.41.2.2 DOI

Alonso L., Creuzé-Des-Châtelliers C., Trabac T., Dubost A., Moënne-Loccoz Y., Pommier T. (2018). Rock substrate rather than black stain alterations drives microbial community structure in the passage of Lascaux Cave. Microbiome 6:216. doi: 10.1186/s40168-018-0599-9, PMID: PubMed DOI PMC

Barton H. A., Northup D. E. (2007). Geomicrobiology in cave environments: past, current and future perspectives. J Caves Karst Stud. 69, 163–178.

Bastian F., Alabouvette C., Jurado V., Saiz-Jimenez C. (2009). Impact of biocide treatments on the bacterial communities of the Lascaux Cave. Naturwissenschaften 96, 863–868. doi: 10.1007/s00114-009-0540-y, PMID: PubMed DOI

Bercea S., Năstase-Bucur R., Mirea I. C., Măntoiu D. Ş., Kenesz M., Petculescu A., et al. . (2018). Novel approach to microbiological air monitoring in show caves. Aerobiologia 34, 445–468. doi: 10.1007/s10453-018-9523-9 DOI

Bercea S., Năstase-Bucur R., Moldovan O. T., Kenesz M., Constantin S. (2019). Yearly microbial cycle of human exposed surfaces in show caves. Subterr. Biol. 31, 1–14. doi: 10.3897/subtbiol.31.34490 DOI

Borda D. R., Năstase-Bucur R. M., Spinu M., Uricariu R., Mulec J. (2014). Aerosolized microbes from organic rich materials: case study of bat guano from caves in Romania. J. Caves Karst Stud. 76, 114–126. doi: 10.4311/2013MB0116 DOI

Bücs S. L., Jére C., Csősz I., Barti L., Szodoray-Parády F. (2012). Distribution and conservation status of cave-dwelling bats in the Romanian Western Carpathians. Vespertilio 16, 97–113.

Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869, PMID: PubMed DOI PMC

Chen R. W., He Y. Q., Cui L. Q., Li C., Shi S. B., Long L. J., et al. . (2021). Diversity and distribution of uncultured and cultured Gaiellales and Rubrobacterales in South China Sea sediments. Front. Microbiol. 12:657072. doi: 10.3389/fmicb.2021.657072, PMID: PubMed DOI PMC

Chen M., Xu P., Zeng G., Yang C., Huang D., Zhang J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol. Adv. 33, 745–755. doi: 10.1016/j.biotechadv.2015.05.003, PMID: PubMed DOI

Coutinho P. M., Deleury E., Davies G. J., Henrissat B. (2003). An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317. doi: 10.1016/S0022-2836(03)00307-3, PMID: PubMed DOI

Cuezva S., Sanchez-Moral S., Saiz-Jimenez C., Cañaveras J. C. (2009). Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int. J. Speleol. 38, 83–92. doi: 10.5038/1827-806X.38.1.9 DOI

Cunrath O., Bumann D. (2019). Host resistance factor SLC11A1 restricts salmonella growth through magnesium deprivation. Science 366, 995–999. doi: 10.1126/science.aax7898, PMID: PubMed DOI

De Bruin S., Vasquez-Cardenas D., Sarbu S. M., Meysman Sousa D. Z., Van Loosdrecht M. C. M., Lin Y. (2022). Sulfated glycosaminoglycan-like polymers are present in an acidophilic biofilm from a sulfidic cave. Sci. Total Environ. 829:154472. doi: 10.1016/j.scitotenv.2022.154472, PMID: PubMed DOI

De Mandal S., Chatterjee R., Kumar N. S. (2017). Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol. 17:90. doi: 10.1186/s12866-017-1002-x, PMID: PubMed DOI PMC

Dedysh S. N., Yilmaz P. (2018). Refining the taxonomic structure of the phylum Acidobacteria. Int. J. Syst. Evol. Microbiol. 68, 3796–3806. doi: 10.1099/ijsem.0.003062, PMID: PubMed DOI

Epure L., Meleg I. N., Munteanu C. M., Roban R. D., Moldovan O. T. (2014). Bacterial and fungal diversity of quaternary cave sediment deposits. Geomicrobiol J. 31, 116–127. doi: 10.1080/01490451.2013.815292 DOI

Gan H. M., Wengert P., Barton H. A., Hudson A. O., Savka M. A. (2020). Insight into the resistome and quorum sensing system of a divergent Acinetobacter pittii isolate from an untouched site of the Lechuguilla Cave. Access Microbiol. 2:acmi000089. doi: 10.1099/acmi.0.000089, PMID: PubMed DOI PMC

Garland J. L. (2006). Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. 24, 289–300. doi: 10.1111/j.1574-6941.1997.tb00446.x DOI

Garland M., Mills A. L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351–2359. doi: 10.1128/aem.57.8.2351-2359.1991, PMID: PubMed DOI PMC

Heberle H., Meirelles V. G., da Silva F. R., Telles G. P., Minghim R. (2015). Interacti Venn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16:169. doi: 10.1186/s12859-015-0611-3, PMID: PubMed DOI PMC

Hershey O. S., Kallmeyer J., Wallace A., Barton M. D., Barton H. A. (2018). High microbial diversity despite extremely low biomass in a deep karst aquifer. Front. Microbiol. 9:2823. doi: 10.3389/fmicb.2018.02823, PMID: PubMed DOI PMC

Howarth F. G., Moldovan O. T. (2018). “The ecological classification of cave animals and their adaptations” in Cave Ecology. eds. Moldovan O. T., Kovác L., Halse S. (Cham: Springer; ), 41–67.

Iţcuş C., Pascu M. D., Brad T., Perşoiu A., Purcarea C. (2016). Diversity of cultured bacteria from the perennial ice block of Scărişoara Ice Cave, Romania. Int. J. Speleol. 45, 89–100. doi: 10.5038/1827-806x.45.1.1948 DOI

Jurado V., Gonzalez-Pimentel J. L., Miller A. Z., Hermosin B., D’Angeli I. M., Tognini P., et al. . (2020). Microbial communities in vermiculation deposits from an Alpine Cave. Front. Earth Sci. 8:586248. doi: 10.3389/feart.2020.586248 DOI

Kenarova A., Radeva G., Traykov I., Boteva S. (2014). Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites. Ecotoxicol. Environ. Saf. 100, 226–232. doi: 10.1016/j.ecoenv.2013.11.012, PMID: PubMed DOI

Koner S., Chen J. S., Hsu B. M., Tan C. W., Fan C. W., Chen T. H., et al. . (2021). Assessment of carbon substrate catabolism pattern and functional metabolic pathway for microbiota of limestone caves. Microorganisms 9:1789. doi: 10.3390/microorganisms9081789, PMID: PubMed DOI PMC

Koren O., Rosenberg E. (2008). Bacteria associated with the bleached and cave coral Oculina patagonica. Microb. Ecol. 55, 523–529. doi: 10.1007/s00248-007-9297-z, PMID: PubMed DOI

Laiz L., Groth I., Gonzalez I., Saiz-Jimenez C. (1999). Microbiological study of the dripping waters in Altamira Cave (Santillana del Mar, Spain). J. Microbiol. Methods 36, 129–138. doi: 10.1016/S0167-7012(99)00018-4, PMID: PubMed DOI

Lavoie K. H., Winter A. S., Read K. J. H., Hughes E. M., Spilde M. N., Northup D. E. (2017). Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA. PLoS One 12:e0169339. doi: 10.1371/journal.pone.0169339, PMID: PubMed DOI PMC

Lehman R. M., Colwell F. S., Ringelbergb D. B., White D. C. (1995). Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. J. Microbiol. Methods 22, 263–281. doi: 10.1016/0167-7012(95)00012-A DOI

Li M., Fang C., Kawasaki S., Huang M., Achal V. (2019). Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a karst cave. Int. Biodeterior. Biodegradation 141, 94–100. doi: 10.1016/j.ibiod.2018.03.008 DOI

Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17:10. doi: 10.14806/ej.17.1.200 DOI

McMurdie P. J., Holmes S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217, PMID: PubMed DOI PMC

Moldovan O. T., Bercea S., Năstase-Bucur R., Constantin S., Kenesz M., Mirea I. C., et al. . (2020). Management of water bodies in show caves – a microbial approach. Tour. Manag. 78:104037. doi: 10.1016/j.tourman.2019.104037 DOI

Norris P. R., Davis-Belmar C. S., Brown C. F., Calvo-Bado L. A. (2011). Autotrophic, sulfur-oxidizing actinobacteria in acidic environments. Extremophiles 15, 155–163. doi: 10.1007/s00792-011-0358-3, PMID: PubMed DOI

Oliveira C., Gunderman L., Coles C. A., Lochmann J., Parks M., Ballard E., et al. . (2017). 16S rRNA gene-based metagenomic analysis of Ozark cave bacteria. Diversity 9:31. doi: 10.3390/d9030031, PMID: PubMed DOI PMC

Onac B. P., Goran C. (2019). “Karst and Caves of Romania: A Brief Overview” in Cave and Karst Systems of Romania. eds. Ponta G. M. I., Onac B. (Cham: Springer; ), 21–35.

Ortiz M., Neilson J. W., Nelson W. M., Legatzki A., Byrne A., Yu Y., et al. . (2013). Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner caverns, AZ. Microb. Ecol. 65, 371–383. doi: 10.1007/s00248-012-0143-6, PMID: PubMed DOI

Parks D. H., Tyson G. W., Hugenholtz P., Beiko R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124. doi: 10.1093/bioinformatics/btu494, PMID: PubMed DOI PMC

Paun V. I., Icaza G., Lavin P., Marin C., Tudorache A., Persoiu A., et al. . (2019). Total and potentially active bacterial communities entrapped in a late glacial through holocene ice core from Scarisoara Ice Cave, Romania. Front. Microbiol. 10:1193. doi: 10.3389/fmicb.2019.01193, PMID: PubMed DOI PMC

Preiss J., Romeo T. (1994). Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 47, 299–329. doi: 10.1016/S0079-6603(08)60255-X PubMed DOI

Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., et al. . (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196. doi: 10.1093/nar/gkm864, PMID: PubMed DOI PMC

Rangseekaew P., Pathom-Aree W. (2019). Cave actinobacteria as producers of bioactive metabolites. Front. Microbiol. 10:387. doi: 10.3389/fmicb.2019.00387, PMID: PubMed DOI PMC

Rapala J., Berg K. A., Lyra C., Niemi R. M., Manz W., Suomalainen S., et al. . (2005). Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int. J. Syst. Evol. Microbiol. 55, 1563–1568. doi: 10.1099/ijs.0.63599-0 PubMed DOI

Riquelme C., Hathaway J. J. M., Dapkevicius M. D. L. N. E., Miller A. Z., Kooser A., Northup D. E., et al. . (2015). Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Front. Microbiol. 6:1342. doi: 10.3389/fmicb.2015.01342, PMID: PubMed DOI PMC

Rusu T. (1988). “Carstul din muntii padurea craiului” in par Teodor Rusu. eds. Dacia Cluj-Napoca. (L e karst des Monts Padurea Craiului; ).

Sanyal A., Antony R., Samui G., Thamban M. (2018). Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol. Res. 208, 32–42. doi: 10.1016/j.micres.2018.01.004, PMID: PubMed DOI

Sarbu S. M., Kane T. C., Kinkle B. K. (1996). A chemoautotrophically based cave ecosystem. Science 272, 1953–1955. doi: 10.1126/science.272.5270.1953, PMID: PubMed DOI

Sathya A., Vijayabharathi R., Gopalakrishnan S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7:102. doi: 10.1007/s13205-017-0736-3, PMID: PubMed DOI PMC

Sjöberg S., Stairs C. W., Allard B., Homa F., Martin T., Sjöberg V., et al. . (2020). Microbiomes in a manganese oxide producing ecosystem in the Ytterby mine, Sweden: impact on metal mobility. FEMS Microbiol. 96:fiaa169. doi: 10.1093/femsec/fiaa169, PMID: PubMed DOI PMC

Song B., Leff L. G. (2006). Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol. Res. 161, 355–361. doi: 10.1016/j.micres.2006.01.004, PMID: PubMed DOI

Stetzenbach L. D., Kelley L. M., Sinclair N. A. (1986). Isolation, identification, and growth of well water bacteria. Ground Water 24, 6–10. doi: 10.1111/j.1745-6584.1986.tb01452.x DOI

Tomczyk-Żak K., Zielenkiewicz U. (2016). Microbial diversity in caves. Geomicrobiol J. 33, 20–38. doi: 10.1080/01490451.2014.1003341 DOI

Tomova I., Lazarkevich I., Tomova A., Kambourova M., Vasileva-Tonkova E. (2013). Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. Int. J. Speleol. 42, 65–76. doi: 10.5038/1827-806X.42.1.8 DOI

Wang T., Flint S., Palmer J. (2019). Magnesium and calcium ions: roles in bacterial cell attachment and biofilm structure maturation. Biofouling 35, 959–974. doi: 10.1080/08927014.2019.1674811, PMID: PubMed DOI

Wu X., Peng J., Liu P., Bei Q., Rensing C., Li Y., et al. . (2021). Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Sci. Total Environ. 785:147329. doi: 10.1016/j.scitotenv.2021.147329, PMID: PubMed DOI

Wu Y., Tan L., Liu W., Wang B., Wang J., Cai Y., et al. . (2015). Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. Front. Microbiol. 6:244. doi: 10.3389/fmicb.2015.00244, PMID: PubMed DOI PMC

Wu H., Zhang Q., Chen X., Wang L., Luo W., Zhang Z., et al. . (2021). Effect of HRT and BDPs types on nitrogen removal and microbial community of solid carbon source SND process treating low carbon/nitrogen domestic wastewater. J. Water Process Eng. 40:101854. doi: 10.1016/j.jwpe.2020.101854 DOI

Yang Z. N., Liu Z. S., Wang K. H., Liang Z. L., Abdugheni R., Huang Y., et al. . (2022). Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites. Environ. Sci. Ecotechnol. 10:100169. doi: 10.1016/j.ese.2022.100169, PMID: PubMed DOI PMC

Zada S., Xie J., Yang M., Yang X., Sajjad W., Rafiq M., et al. . (2021). Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves. Appl. Microbiol. Biotechol. 105, 8921–8936. doi: 10.1007/s00253-021-11658-4, PMID: PubMed DOI

Zecchin S., Corsini A., Martin M., Cavalca L. (2017). Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies. App. Microbiol. Biotechnol. 101, 6725–6738. doi: 10.1007/s00253-017-8382-6, PMID: PubMed DOI

Zhu H. Z., Zhang Z. F., Zhou N., Jiang C. Y., Wang B. J., Cai L., et al. . (2019). Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system. Front. Microbiol. 10:1726. doi: 10.3389/fmicb.2019.01726, PMID: PubMed DOI PMC

Zoltan L., Szántó L. (2003). Bats of the Carpathian Region. Acta Chiropt. 5, 155–160. doi: 10.3161/001.005.0115 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...