Dynamics of Milk Parameters of Quarter Samples before and after the Dry Period on Czech Farms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NAZV QK21010123
Ministry of Agriculture of the Czech Republic
PubMed
36830497
PubMed Central
PMC9952134
DOI
10.3390/ani13040712
PII: ani13040712
Knihovny.cz E-zdroje
- Klíčová slova
- dairy cow, dry period, milk, selective dry cow therapy, somatic cell count,
- Publikační typ
- časopisecké články MeSH
This study aimed to monitor milk parameters on three different dairy farms in the Czech Republic to describe their readiness for implementing selective dry cow therapy. Fat, protein, casein, lactose, solids-not-fat content, total solids content, freezing point, titratable acidity, and somatic cell count of quarter milk samples collected from tested Holstein cows were evaluated. Associations between the tested parameters, as well as the effects of parity, farm, day of calving, and time of evaluation at dry-off and after calving, were assessed. Values of the leading milk components dynamically changed between dry-off and after calving, but only protein content was significantly affected. The most important parameter of our research, the somatic cell count of quarter milk samples, was also not affected by the time of evaluation. Even though a slight increase in the mean of somatic cell count is expected before the dry period and after calving, at dry-off, we observed 30%, 42%, and 24% of quarters with somatic cell counts above 200,000 cells per mL, while after calving, we observed 27%, 16%, and 18% of quarters with somatic cell counts above 200,000 cells per mL on Farm 1, Farm 2, and Farm 3, respectively. High somatic cell counts (>200,000 cells per mL) indicate bacterial infection, as confirmed by the significant negative correlation between this parameter and lactose content. In addition, a deficient milk fat-to-protein ratio was observed on two farms, which may indicate metabolic disorders, as well as the occurrence of intramammary infections. Despite the above, we concluded that according to the thresholds of somatic cell counts for selective dry cow therapy taken from foreign studies, a large part of the udder quarters could be dried off without the administration of antibiotics. However, it is necessary to set up more effective mechanisms for mastitis prevention.
Zobrazit více v PubMed
Fernandes A.M., Oliveira C.A.F., Lima C.G. Effects of Somatic Cell Counts in Milk on Physical and Chemical Characteristics of Yoghurt. Int. Dairy J. 2007;17:111–115. doi: 10.1016/j.idairyj.2006.02.005. DOI
Moradi M., Omer A.K., Razavi R., Valipour S., Guimarães J.T. The Relationship between Milk Somatic Cell Count and Cheese Production, Quality and Safety: A Review. Int. Dairy J. 2021;113:104884. doi: 10.1016/j.idairyj.2020.104884. DOI
Ruegg P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J. Dairy Sci. 2017;100:10381–10397. doi: 10.3168/jds.2017-13023. PubMed DOI
European Parliament and the Council of the European Union . Regulation (EU) 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying down Specific Hygiene Rules for Food of Animal Origin. European Commission; Brussels, Belgium: 2004.
European Parliament and the Council of the European Union . Regulation (EU) 6/2019 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. European Commission; Brussels, Belgium: 2018.
Doehring C., Sundrum A. The Informative Value of an Overview on Antibiotic Consumption, Treatment Efficacy and Cost of Clinical Mastitis at Farm Level. Prev. Vet. Med. 2019;165:63–70. doi: 10.1016/j.prevetmed.2019.02.004. PubMed DOI
Pokludova L., Maxová L., Mašková Z., Novotná P., Chumchalová J., Bures J. Medicinal Products Used in Mastitis Treatment and Prevention—Overview, Trends in Consumption and Imperative on More Prudent Used of Antimicrobials. Veterinarstvi. 2021;71:82–93.
Zobel G., Weary D.M., Leslie K.E., von Keyserlingk M.A.G. Invited Review: Cessation of Lactation: Effects on Animal Welfare. J. Dairy Sci. 2015;98:8263–8277. doi: 10.3168/jds.2015-9617. PubMed DOI
Weber J., Borchardt S., Seidel J., Schreiter R., Wehrle F., Donat K., Freick M. Effects of Selective Dry Cow Treatment on Intramammary Infection Risk after Calving, Cure Risk during the Dry Period, and Antibiotic Use at Drying-off: A Systematic Review and Meta-Analysis of Current Literature (2000–2021) Animals. 2021;11:3403. doi: 10.3390/ani11123403. PubMed DOI PMC
McCubbin K.D., de Jong E., Lam T.J.G.M., Kelton D.F., Middleton J.R., McDougall S., De Vliegher S., Godden S., Rajala-Schultz P.J., Rowe S., et al. Invited Review: Selective Use of Antimicrobials in Dairy Cattle at Drying-Off. J. Dairy Sci. 2022;105:7161–7189. doi: 10.3168/jds.2021-21455. PubMed DOI
Østerås O., Sølverød L. Norwegian mastitis control programme. Ir. Vet. J. 2009;62:26–33. doi: 10.1186/2046-0481-62-S4-S26. PubMed DOI PMC
Krattley-Roodenburg B., Huybens L.J., Nielen M., van Werven T. Dry Period Management and New High Somatic Cell Count during the Dry Period in Dutch Dairy Herds under Selective Dry Cow Therapy. J. Dairy Sci. 2021;104:6975–6984. doi: 10.3168/jds.2020-19133. PubMed DOI
Antanaitis R., Juozaitienė V., Jonike V., Baumgartner W., Paulauskas A. Milk Lactose as a Biomarker of Subclinical Mastitis in Dairy Cows. Animals. 2021;11:1736. doi: 10.3390/ani11061736. PubMed DOI PMC
Novac C.S., Andrei S. The Impact of Mastitis on the Biochemical Parameters, Oxidative and Nitrosative Stress Markers in Goat’s Milk: A Review. Pathogens. 2020;9:882. doi: 10.3390/pathogens9110882. PubMed DOI PMC
Rienesl L., Khayatzdadeh N., Köck A., Egger-Danner C., Gengler N., Grelet C., Dale L.M., Werner A., Auer F.J., Leblois J., et al. Prediction of Acute and Chronic Mastitis in Dairy Cows Based on Somatic Cell Score and Mid-Infrared Spectroscopy of Milk. Animals. 2022;12:1830. doi: 10.3390/ani12141830. PubMed DOI PMC
Kvapilik J., Bucek P., Kucera J. Results of Performance Testing of Dairy Cows. Yearb. Cattle Breed. Czech Repub. 2019:28–42.
Chan Y.H. Biostatistics 104: Correlational Analysis. Singapore Med. J. 2003;44:614–619. PubMed
Green M.J., Bradley A.J., Medley G.F., Browne W.J. Cow, Farm, and Herd Management Factors in the Dry Period Associated with Raised Somatic Cell Counts in Early Lactation. J. Dairy Sci. 2008;91:1403–1415. doi: 10.3168/jds.2007-0621. PubMed DOI PMC
Vilar M.J., Rajala-Schultz P.J. Dry-off and Dairy Cow Udder Health and Welfare: Effects of Different Milk Cessation Methods. Vet. J. 2020;262:105503. doi: 10.1016/j.tvjl.2020.105503. PubMed DOI
Sitkowska B. Effect of the Cow Age Group and Lactation Stage on the Count of Somatic Cells in Cow Milk. J. Cent. Eur. Agric. 2008;9:57–61.
Garnsworthy P.C., Masson L.L., Lock A.L., Mottram T.T. Variation of Milk Citrate with Stage of Lactation and de Novo Fatty Acid Synthesis in Dairy Cows. J. Dairy Sci. 2006;89:1604–1612. doi: 10.3168/jds.S0022-0302(06)72227-5. PubMed DOI
Cejna V., Chládek G. The Importance of Monitoring Changes in Milk Fat To Milk Protein Ratio in Holstein Cows During Lactation. J. Cent. Eur. Agric. 2006;6:539–546.
Heck J.M.L., Van Valenberg H.J.F., Dijkstra J., van Hooijdonk A.C.M. Seasonal Variation in the Dutch Bovine Raw Milk Composition. J. Dairy Sci. 2009;92:4745–4755. doi: 10.3168/jds.2009-2146. PubMed DOI
Liu L., Zhou J., Chen C.J., Zhang J., Wen W., Tian J., Zhang Z., Gu Y. GWAS-Based Identification of New Loci for Milk Yield, Fat, and Protein in Holstein Cattle. Animals. 2020;10:2048. doi: 10.3390/ani10112048. PubMed DOI PMC
Mulligan F.J., Doherty M.L. Production Diseases of the Transition Cow. Vet. J. 2008;176:3–9. doi: 10.1016/j.tvjl.2007.12.018. PubMed DOI
Jouany J.P. Optimizing Rumen Functions in the Close-up Transition Period and Early Lactation to Drive Dry Matter Intake and Energy Balance in Cows. Anim. Reprod. Sci. 2006;96:250–264. doi: 10.1016/j.anireprosci.2006.08.005. PubMed DOI
Janzen J.J. Economic Losses Resulting from Mastitis. A Review. J. Dairy Sci. 1970;53:1151–1160. doi: 10.3168/jds.S0022-0302(70)86361-5. PubMed DOI
Elgersma A., Ellen G., Van Der Horst H., Boer H., Dekker P.R., Tamminga S. Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Anim. Feed Sci. Technol. 2004;117:13–27. doi: 10.1016/j.anifeedsci.2004.08.003. DOI
Pyörälä S. Mastitis in Post-Partum Dairy Cows. Reprod. Domest. Anim. 2008;43:252–259. doi: 10.1111/j.1439-0531.2008.01170.x. PubMed DOI
Reinhardt T.A., Lippolis J.D., McCluskey B.J., Goff J.P., Horst R.L. Prevalence of Subclinical Hypocalcemia in Dairy Herds. Vet. J. 2011;188:122–124. doi: 10.1016/j.tvjl.2010.03.025. PubMed DOI
Berge A.C., Vertenten G. A Field Study to Determine the Prevalence, Dairy Herd Management Systems, and Fresh Cow Clinical Conditions Associated with Ketosis in Western European Dairy Herds. J. Dairy Sci. 2014;97:2145–2154. doi: 10.3168/jds.2013-7163. PubMed DOI
Cabezas-Garcia E.H., Gordon A.W., Mulligan F.J., Ferris C.P. Revisiting the Relationships between Fat-to-Protein Ratio in Milk and Energy Balance in Dairy Cows of Different Parities, and at Different Stages of Lactation. Animals. 2021;11:3256. doi: 10.3390/ani11113256. PubMed DOI PMC
Humer E., Petri R.M., Aschenbach J.R., Bradford B.J., Penner G.B., Tafaj M., Südekum K.H., Zebeli Q. Invited Review: Practical Feeding Management Recommendations to Mitigate the Risk of Subacute Ruminal Acidosis in Dairy Cattle. J. Dairy Sci. 2018;101:872–888. doi: 10.3168/jds.2017-13191. PubMed DOI
Zschiesche M., Mensching A., Sharifi A.R., Hummel J. The Milk Fat-to-Protein Ratio as Indicator for Ruminal PH Parameters in Dairy Cows: A Meta-Analysis. Dairy. 2020;1:259–268. doi: 10.3390/dairy1030017. DOI
Yang L., Yang Q., Yi M., Pang Z.H., Xiong B.H. Effects of Seasonal Change and Parity on Raw Milk Composition and Related Indices in Chinese Holstein Cows in Northern China. J. Dairy Sci. 2013;96:6863–6869. doi: 10.3168/jds.2013-6846. PubMed DOI
Bonfatti V., Gervaso M., Coletta A., Carnier P. Effect of Parity, Days in Milk, and Milk Yield on Detailed Milk Protein Composition in Mediterranean Water Buffalo. J. Dairy Sci. 2012;95:4223–4229. doi: 10.3168/jds.2011-5094. PubMed DOI
Haile-Mariam M., Pryce J.E. Genetic Parameters for Lactose and Its Correlation with Other Milk Production Traits and Fitness Traits in Pasture-Based Production Systems. J. Dairy Sci. 2017;100:3754–3766. doi: 10.3168/jds.2016-11952. PubMed DOI
Costa A., Lopez-Villalobos N., Sneddon N.W., Shalloo L., Franzoi M., De Marchi M., Penasa M. Invited Review: Milk Lactose—Current Status and Future Challenges in Dairy Cattle. J. Dairy Sci. 2019;102:5883–5898. doi: 10.3168/jds.2018-15955. PubMed DOI
Sadovnikova A., Garcia S.C., Hovey R.C. A Comparative Review of the Cell Biology, Biochemistry, and Genetics of Lactose Synthesis. J. Mammary Gland Biol. Neoplasia. 2021;26:181–196. doi: 10.1007/s10911-021-09490-7. PubMed DOI PMC
Hagnestam-Nielsen C., Emanuelson U., Berglund B., Strandberg E. Relationship between somatic cell count and milk yield in different stages of lactation. J. Dairy Sci. 2009;92:3124–3133. doi: 10.3168/jds.2008-1719. PubMed DOI
Pirlo G., Miglior F., Speroni M. Effect of Age at First Calving on Production Traits and on Difference between Milk Yield Returns and Rearing Costs in Italian Holsteins. J. Dairy Sci. 2000;83:603–608. doi: 10.3168/jds.S0022-0302(00)74919-8. PubMed DOI
De Vliegher S., Fox L.K., Piepers S., McDougall S., Barkema H.W. Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. J. Dairy Sci. 2012;95:1025–1040. doi: 10.3168/jds.2010-4074. PubMed DOI
Chládek G., Čejna V. The Relationship between Freezing Point of Milk and Milk Components and Its Changes during Lactation in Czech Pied and Holstein Cows. Acta Univ. Agric. Silvic. Mendel. Brun. 2005;53:63–70. doi: 10.11118/actaun200553050063. DOI
Henno M., Ots M., Jõudu I., Kaart T., Kärt O. Factors Affecting the Freezing Point Stability of Milk from Individual Cows. Int. Dairy J. 2008;18:210–215. doi: 10.1016/j.idairyj.2007.08.006. DOI
Zagorska J., Ciprovica I. Evaluation of Factors Affecting Freezing Point of Milk. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2013;7:106–111.
Kedzierska-Matysek M., Litwińczuk Z., Florek M., Barłowska J. The Effects of Breed and Other Factors on the Composition and Freezing Point of Cow’s Milk in Poland. Int. J. Dairy Technol. 2011;64:336–342. doi: 10.1111/j.1471-0307.2011.00682.x. DOI
Kyselová J., Ječmínková K., Matějíčková J., Hanuš O., Kott T., Štípková M., Krejčová M. Physiochemical Characteristics and Fermentation Ability of Milk from Czech Fleckvieh Cows Are Related to Genetic Polymorphisms of β-Casein, κ-Casein, and β-Lactoglobulin. Asian-Australas. J. Anim. Sci. 2019;32:14–22. doi: 10.5713/ajas.17.0924. PubMed DOI PMC
Calamari L., Gobbi L., Bani P. Improving the Prediction Ability of FT-MIR Spectroscopy to Assess Titratable Acidity in Cow’s Milk. Food Chem. 2016;192:477–484. doi: 10.1016/j.foodchem.2015.06.103. PubMed DOI
Kuchtík J., Šustová K., Sýkora V., Kalhotka L., Pavlata L., Konečná L. Changes in the Somatic Cells Counts and Total Bacterial Counts in Raw Goat Milk during Lactation and Their Relationships to Selected Milk Traits. Ital. J. Anim. Sci. 2021;20:911–917. doi: 10.1080/1828051X.2021.1913077. DOI
Cinar M., Serbester U., Ceyhan A., Gorgulu M. Effect of Somatic Cell Count on Milk Yield and Composition of First and Second Lactation Dairy Cows. Ital. J. Anim. Sci. 2015;14:105–108. doi: 10.4081/ijas.2015.3646. DOI
Ferronatto J.A., Ferronatto T.C., Schneider M., Pessoa L.F., Blagitz M.G., Heinemann M.B., Libera A.M.M.P.D., Souza F.N. Diagnosing mastitis in early lactation: Use of Somaticell®, California mastitis test and somatic cell count. Ital. J. Anim. Sci. 2018;17:723–729. doi: 10.1080/1828051X.2018.1426394. DOI
Dingwell R.T., Leslie K.E., Schukken Y.H., Sargeant J.M., Timms L.L., Duffield T.F., Keefe G.P., Kelton D.F., Lissemore K.D., Conklin J. Association of Cow and Quarter-Level Factors at Drying-off with New Intramammary Infections during the Dry Period. Prev. Vet. Med. 2004;63:75–89. doi: 10.1016/j.prevetmed.2004.01.012. PubMed DOI
Zecconi A., Sesana G., Vairani D., Cipolla M., Rizzi N., Zanini L. Somatic Cell Count as a Decision Tool for Selective Dry Cow Therapy in Italy. Ital. J. Anim. Sci. 2019;18:435–440. doi: 10.1080/1828051X.2018.1532328. DOI
Scherpenzeel C.G.M., Den Uijl I.E.M., Van Schaik G., Olde Riekerink R.G.M., Keurentjes J.M., Lam T.J.G.M. Evaluation of the Use of Dry Cow Antibiotics in Low Somatic Cell Count Cows. J. Dairy Sci. 2014;97:3606–3614. doi: 10.3168/jds.2013-7655. PubMed DOI