Distinguishing Healthy and Carcinoma Cell Cultures Using Fluorescence Spectra Decomposition with a Genetic-Algorithm-Based Code
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS19/135/OHK4/2T/17, SGS21/083/OHK4/1T/17
Czech Technical University in Prague
PubMed
36832022
PubMed Central
PMC9954475
DOI
10.3390/bios13020256
PII: bios13020256
Knihovny.cz E-zdroje
- Klíčová slova
- cancer biosensor, cell suspension auto-fluorescence, endogenous fluorophores, genetic algorithm, steady state fluorescence,
- MeSH
- algoritmy * MeSH
- buněčné kultury MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- karcinom * MeSH
- myši MeSH
- software MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this paper, we analysed the steady state fluorescence spectra of cell suspensions containing healthy and carcinoma fibroblast mouse cells, using a genetic-algorithm-spectra-decomposition software (GASpeD). In contrast to other deconvolution algorithms, such as polynomial or linear unmixing software, GASpeD takes into account light scatter. In cell suspensions, light scatter plays an important role as it depends on the number of cells, their size, shape, and coagulation. The measured fluorescence spectra were normalized, smoothed and deconvoluted into four peaks and background. The wavelengths of intensities' maxima of lipopigments (LR), FAD, and free/bound NAD(P)H (AF/AB) of the deconvoluted spectra matched published data. In deconvoluted spectra at pH = 7, the fluorescence intensities of the AF/AB ratio in healthy cells was always higher in comparison to carcinoma cells. In addition, the AF/AB ratio in healthy and carcinoma cells were influenced differently by changes in pH. In mixtures of healthy and carcinoma cells, AF/AB decreases when more than 13% of carcinoma cells are present. Expensive instrumentation is not required, and the software is user friendly. Due to these attributes, we hope that this study will be a first step in the development of new cancer biosensors and treatments with the use of optical fibers.
Zobrazit více v PubMed
Rui H., Hongyu S., Dujuan L., Weihuang Y., Kai F., Chaoran L., Linxi D., Gaofeng W. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Biosensors. 2022;12:342. PubMed PMC
Camarca A., Varriale A., ACapo A., Pennacchio A., Calabrese A., Giannattasio C., Almuzara C.M., D’Auria S., Staiano M. Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. Sensors. 2021;21:906. doi: 10.3390/s21030906. PubMed DOI PMC
Patel J., Patel P. Biosensors and biomarkers: Promising tools for cancer diagnosis. Int. J. Biosens. Bioelectron. 2017;3:313–316. doi: 10.15406/ijbsbe.2017.03.00072. DOI
Yaku K., Okabe K., Hikosaka K., Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front. Oncol. 2018;8:622. doi: 10.3389/fonc.2018.00622. PubMed DOI PMC
Navas L.E., Carnero A. NAD+ metabolism, stemness, the imunne responses, and cancer. Signal Transduct. Target. Ther. 2021;6:2. doi: 10.1038/s41392-020-00354-w. PubMed DOI PMC
Croce A.C., Bottiroli G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014;58:2461. doi: 10.4081/ejh.2014.2461. PubMed DOI PMC
Aubin J.E. Autofluorescence of viable cultured mammalian cells. J. Histochem. Cyto. Chem. 1979;27:36–43. doi: 10.1177/27.1.220325. PubMed DOI
Lmon J.M., Ohent E., Liet P., Hirshberg J., Wouters A., Ohen H., Thorell B. Microspectrofluorometric Approach to the Study of Free/Bound NAD(P)H Ratio as Metabolic Indicator in Various Cell Types. Photochem. Photohiol. 1982;36:585–593. PubMed
Kolenc O.I., Quinn K.P. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD. Antioxid. Redox Signal. 2019;30:875–889. doi: 10.1089/ars.2017.7451. PubMed DOI PMC
Lakowicz J.R., Szmacinski H., Nowaczyk K. Fluorescence lifetime imaging of free and protein bound NADH. Proc. Natl. Acad. Sci. USA. 1992;89:1271–1275. doi: 10.1073/pnas.89.4.1271. PubMed DOI PMC
Schwartz J.P., Passonneau J.V., Johnson G.S., Pastan I. The effect of growth conditions on NAD+. NADH ratio in normal and transformed fibroblast. J. Biol. Chem. 1974;249:4138–4143. doi: 10.1016/S0021-9258(19)42494-0. PubMed DOI
Kim D.H., Marbois B.N., Faull K.F., Eckhert C.D. Esterification of borate with NAD+ and NADH as studied by electrospray ionization mass spectrometry and 11B NMR spectroscopy. J. Mass Spectrom. 2003;38:632–640. doi: 10.1002/jms.476. PubMed DOI
Chance B., Cohen P., Jobsis F., Schoener B. Intracellular oxidation-reduction states in vivo. Science. 1962;137:499–508. doi: 10.1126/science.137.3529.499. PubMed DOI
Podrazky O., Kuncova G. Determination of concentration of Living Immobilized Yeast Cells by Fluorescence Spectroscopy. Sens. Actuators B–Chem. 2005;107:126–134. doi: 10.1016/j.snb.2004.08.031. DOI
Ghukasyan V.V., Heikal A.A., editors. Natural Biomarkers for Cellular Metabolism Biology, Techniques, and Applications. CRC Press; Boca Raton, FL, USA: 2014. Heikal, Series in Cellular and Clinical imaging 2015 by Taylor & Francis Group, LLC.
Marose S., Lindemann C., Scheper T. Two-Dimensional Fluorescence Spectroscopy: A New Tool for On-Line Bioprocess Monitoring. Biotechnol. Prog. 1998;14:63–74. doi: 10.1021/bp970124o. PubMed DOI
Ranzan L., Trierweiler L.F., Hitzmann B., Trierweiler J.O. Avoiding misleading predictions in fluorescence-based soft sensors using autoencoders. Chemom. Intell. Lab. Syst. 2022;223:104527. doi: 10.1016/j.chemolab.2022.104527. DOI
Blacker T.S., Duchen M.R. Investigating mitochondrial redox state using NADH and NADPH autofluorescence Free Radical. Biol. Med. 2016;100:53–65. PubMed PMC
Sharick J.T., Favreau P.F., Gillette A.A., MSdao S.M., Merrins M.J., Skala M.C. Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon. Sci. Rep. 2018;8:5456. doi: 10.1038/s41598-018-23691-x. PubMed DOI PMC
Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne P.E., Burkhardt K., Feng Z., Gilliland G.L., Iype L., Jain S., et al. The Protein Data Bank. Nucleic Acids. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Schaefer P.M., Kalinina S., Rueck A., von Arnim CA F., von Einem B. NADH Autofluorescence—A Marker on its Way to Boost Bioenergetic Research. Cytom. Part A. 2019;95:34–46. doi: 10.1002/cyto.a.23597. PubMed DOI
Rehman A.U., Answer A.G., Gosnell M.E., Mahbub S.B., Liu G., Goldys E.M. Fluorescence quenching of free and bound NADH in HeLa cells determined by hyperspectral imaging and unmixing of cell autofluorescence. Biomed. Opt. Express. 2017;8:1488–1498. doi: 10.1364/BOE.8.001488. PubMed DOI PMC
Piersma S.R., Visser AJ W.G., de Vries S., Duine J.A. Optical spectro;scopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: A comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Biochemistry. 1998;37:3068–3077. doi: 10.1021/bi972115u. PubMed DOI
Pradhan A., Pal P., Durocher G., Villeneuve L., Balassy A., Babai F., Gaboury L., Blanchard L. Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species. J. Photochem. Photobiol. B. 1995;31:101–112. doi: 10.1016/1011-1344(95)07178-4. PubMed DOI
Yu Q., Heikal A. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J. Photochem. Photobiol. B Biol. 2005;95:46–57. doi: 10.1016/j.jphotobiol.2008.12.010. PubMed DOI PMC
Wu Y.C., Zheng W., Qu J.Y. Sensing cell metabolism by time-resolved auto-fuorescence. Opt. Lett. 2006;31:3122–3124. doi: 10.1364/OL.31.003122. PubMed DOI
Lin L.S., Liu L.N., Huang H.F., Chen Y.Z., Li B.H., Huang Z. Characterizing Fluorescence Lifetime of NAD(P)H in Human Leukemic Myeloid Cells and Mononuclear Cells. J. Innov. Opt. Health Sci. 2013;6:1350042. doi: 10.1142/S1793545813500429. DOI
Villette S., Pigaglio-Deshayes S., Vever-Bizet C., PValidireb P., Bourg-Heckly G. Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H. Photochem. Photobiol. Sci. 2006;5:483–492. doi: 10.1039/b514801d. PubMed DOI
KE Conley K.E., Ali A., Flores B., SJubrias S., Shankland E.G. Mitochondrial NAD(P)H in vivo: Identifying natural indicators of oxidative phosphorylation in the 31P magnetic resonance spectrum. Front. Physiol. 2016;7:45. doi: 10.3389/fphys.2016.00045. PubMed DOI PMC
Zhu X.H., Lu M., BY Lee B.Y., Ugurbil K., Chen W. In Vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl. Acad. Sci. USA. 2015;112:2876–2881. doi: 10.1073/pnas.1417921112. PubMed DOI PMC
Ghukasyan V.V., Kao F.J. Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide. J. Phys. Chem. C. 2009;113:11532–11540. doi: 10.1021/jp810931u. DOI
Bird D.K., Yan L., Vrotsos K.M., Eliceiri K.W., Vaughan E.M., Keely P.J., White J.G., Ramanujam N. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res. 2005;65:8766–8773. doi: 10.1158/0008-5472.CAN-04-3922. PubMed DOI
Leben R., Köhler M., Radbruch H., Hauser A.E., Niesner R.A. Systematic Enzyme Mapping of Cellular Metabolism by Phasor-Analyzed Label-Free NAD(P)H fluorescence Lifetime Imaging. Int. J. Mol. Sci. 2019;20:5565. doi: 10.3390/ijms20225565. PubMed DOI PMC
Middelburg T.A., Hoy C.L., Neumann H.A.M., Amelik A., Robinson D.J. Correction for tissue optical properties enables quantitative skin fluorescence measurements using multi-diameter single fiber reflectance spectroscopy. J. Dermatol. Sci. 2015;79:64–73. doi: 10.1016/j.jdermsci.2015.03.017. PubMed DOI
De Acha N., Socorro-Leránoz A.B., Elosúa C., Matías I.R. Trends in the Design of Intensity-Based Optical Fiber Biosensors (2010–2020) Biosensors. 2021;11:197. doi: 10.3390/bios11060197. PubMed DOI PMC
Kozen D., Landau S. Polynomial Decomposition Algorithms. [(accessed on 15 September 2022)]. Available online: https://www.cs.cornell.edu/~kozen/Papers/poly.pdf.
Burstein E.A., Abornev S.M., Reshetnyak Y.K. Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components I. Decomposition Algorithms. Biophys. J. 2001;81:1699–1709. doi: 10.1016/S0006-3495(01)75823-7. PubMed DOI PMC
Hageman J.A., Wehrens R. Direct determination of molecular constants from rovibronic spektra with genetic algorithms. J. Chem. Phys. 2000;113:7955–7962. doi: 10.1063/1.1314353. DOI
Ghaheri A., Shoar S., Naderan M., Hoseini S.S. The applications of genetic algorithms in medicine. Oman Med. J. 2015;30:406–416. doi: 10.5001/omj.2015.82. PubMed DOI PMC
Adamek P. Ph.D. Thesis. Faculty of Nuclear Physics, Czech Technical University; Prague, Czech: 2003. Application of Genetic Algorithms to Analysis of High-Parameter Plasma.
Pospisilova M., Adamek P., Peterka P., Kubeček V., Kašík I., Matějec V. Materials Science Forum. Trans Tech Publications Ltd.; Stafa-Zurich, Switzerland: 2007. Influence of Si-Ge-Al-Sb matrices on Tm3+ excitation levels; p. 82.
Sio R., Pospisilova M., Jarosikova T. Analyses of emission spectra of biological fluorophores; Proceedings of the Instruments and Methods for Biology and Medicine Conference 2017, FBME CTU; Kladno, Czech Republic. 5 May 2017; pp. 25–29.
[(accessed on 25 July 2021)]. Available online: https://www.lgcstandards-atcc.org/products/all/CCL-163.aspx.
[(accessed on 25 July 2021)]. Available online: https://www.lgcstandards-atcc.org/products/all/CRL-2638.aspx#culturemethod.
Park J.G., Lee J.-H., Kang M.-S., Park K.-J., Jeon Y.-M., Lee H.-J., Kwon H.-S., Park H.-S., Yeo K.-S., Lee K.-U., et al. Characterization of cell lines established from human hepatocellular carcinoma. Int. J. Cancer. 1995;62:276–282. doi: 10.1002/ijc.2910620308. PubMed DOI
[(accessed on 25 July 2021)]. Available online: https://www.sigmaaldrich.com/technical-documents/protocols/biology/subculture-of-suspension.html.
Operation Manual Part Number 810005 Version B. HORIBA; Longjumeau, France: 2005. FluoroMax®-4 & FluoroMax®-4P with USB; p. 236.
Paul R.J., Schneckenburger H. Oxygen Concentration and the Oxidation-Reduction State of Yeast: Determination of Free/Bound NADH and Flavins by Time-Resolved Spectroscopy. Naturwissenschaften. 1993;83:32–35. doi: 10.1007/BF01139308. PubMed DOI
Svoboda J., Pospisilova M. Analyses of fluorescence spectra of healthy cells as function of carcinoma cell concentration, pH and temperature of environment; Proceedings of the Instruments and Methods for Biology and Medicine Conference 2021, FBME CTU; Kladno, Czech Republic. 17 June 2021; pp. 22–26.
Hahn D.W. Light Scattering Theory Department of Mechanical and Aerospace Engineering. University of Florida. [(accessed on 10 December 2022)]. Available online: http://plaza.ufl.edu/dwhahn/Rayleigh%20and%20Mie%20Light%20Scattering.pdf.
Shilova O.N., Shilov E.S., Deyev S.M. The Effect of Trypan Blue Treatment on Autofluorescence of Fixed Cells. Cytom. Part A. 2017;91:917–925. doi: 10.1002/cyto.a.23199. PubMed DOI
Yuan Y., Yan Z., Miao J., Cai R., Zhang M., Wang Y., Wang L., Dang W., Wang D., Xiang D., et al. Autofluorescence of NADH is a new biomarker for sorting and characterizing cancer stem cells in human glioma. Stem Cell Res. Ther. 2019;10:330. doi: 10.1186/s13287-019-1467-7. PubMed DOI PMC