In Silico Mining and Characterization of High-Quality SNP/Indels in Some Agro-Economically Important Species Belonging to the Family Euphorbiaceae
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36833259
PubMed Central
PMC9956114
DOI
10.3390/genes14020332
PII: genes14020332
Knihovny.cz E-zdroje
- Klíčová slova
- A↔T transversion, C↔T transition, EST, indel, nucleotide substitution, potential SNP,
- MeSH
- exprimované sekvenční adresy MeSH
- jednonukleotidový polymorfismus * MeSH
- mapování chromozomů MeSH
- nukleotidy MeSH
- šlechtění rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nukleotidy MeSH
(1) Background: To assess the genetic makeup among the agro-economically important members of Euphorbiaceae, the present study was conducted to identify and characterize high-quality single-nucleotide polymorphism (SNP) markers and their comparative distribution in exonic and intronic regions from the publicly available expressed sequence tags (ESTs). (2) Methods: Quality sequences obtained after pre-processing by an EG assembler were assembled into contigs using the CAP3 program at 95% identity; the mining of SNP was performed by QualitySNP; GENSCAN (standalone) was used for detecting the distribution of SNPs in the exonic and intronic regions. (3) Results: A total of 25,432 potential SNPs (pSNP) and 14,351 high-quality SNPs (qSNP), including 2276 indels, were detected from 260,479 EST sequences. The ratio of quality SNP to potential SNP ranged from 0.22 to 0.75. A higher frequency of transitions and transversions was observed more in the exonic than the intronic region, while indels were present more in the intronic region. C↔T (transition) was the most dominant nucleotide substitution, while in transversion, A↔T was the dominant nucleotide substitution, and in indel, A/- was dominant. (4) Conclusions: Detected SNP markers may be useful for linkage mapping; marker-assisted breeding; studying genetic diversity; mapping important phenotypic traits, such as adaptation or oil production; or disease resistance by targeting and screening mutations in important genes.
Department of Life Science and Bioinformatics Assam University Silchar 788011 India
Department of Pharmaceutical Sciences Assam University Silchar 788011 India
Department of Zoology Mariani College Mariani 785634 India
GyanArras Academy Gothapatna Malipada Bhubaneswar 751003 India
Zobrazit více v PubMed
Cataluna P., Rates S.M.K. The traditional use of the latex from Euphorbia tirucalli Linnaeus (Euphorbiaceae) in the treatment of cancer in South Brazil. In: Martino V., Caffini N., Lappa A., Ferraro G., Schilder H., editors. Proc. WOCMAP-2 Pharmacognosy, Pharmacology, Phytomedicines, Toxicology. Acta Horticulture ISHS; Leuven, Belgium: 1999. pp. 289–295.
Van Damme P.L.J. Euphorbia tirucalli for high biomass production. In: Schlissel A., Pasternak D., editors. Combating Desertification with Plants. 1st ed. Kluwer Academic Pub; New York, NY, USA: 2001. pp. 169–187.
Duke J.A., Handbook of Energy Crops Purdue University Centre for New Crops and Plant Products. 1983. [(accessed on 9 February 2022)]. Available online: https://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html.
De Oliveira J.S., Leite P.M., de Souza L.B., Mello V.M., Silva E.C., Rubim J.C., Meneghetti S.M.P., Suarez P.A.Z. Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy. 2009;33:449–453. doi: 10.1016/j.biombioe.2008.08.006. DOI
Meneghetti S.A.P., Meneghetti M.R., Serra T.A., Barbosa D.C., Wolf C.R. Biodiesel production from vegetable oil mixtures: Cottonseed, soybean, and castor oils. Energy Fuels. 2007;21:3746–3747. doi: 10.1021/ef070039q. DOI
Bhuyan S., Sundararajan S., Andjelkovic D., Larock R. Effect of crosslinking on tribological behavior of tung oil-based polymers. Tribol. Int. 2010;43:831–837. doi: 10.1016/j.triboint.2009.11.011. DOI
Aloys N., Ming Z.H. Traditional cassava foods in Burundi–A review. Food Rev. Int. 2006;22:1–27. doi: 10.1080/87559120500379761. DOI
Lee C.H., Jeon J.H., Lee S.G., Lee H.S. Insecticidal Properties of Euphorbiaceae: Sebastiania corniculata-derived 8-Hydroxyquinoline and its Derivatives against Three Planthopper Species (Hemiptera: Delphacidae) J. Korean Soc. Appl. Biol. Chem. 2010;53:464–469. doi: 10.3839/jksabc.2010.071. DOI
Kapoor L.D. Handbook of Ayurvedic Medicinal Plants: Herbal Reference Library. CRC Press; Boca Raton, FL, USA: 1989.
Johnson H.E., Banack S.A., Cox P.A. Variability in content of the anti-AIDS drug candidate prostratin in Samoan populations of Homalanthus nutans. J. Nat. Prod. 2008;71:2041–2044. doi: 10.1021/np800295m. PubMed DOI PMC
Cordeiro G.M., Casu R., Mclntyre C.L., Manners J.M., Henry R.J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci. 2001;160:1115–1123. doi: 10.1016/S0168-9452(01)00365-X. PubMed DOI
Kantety R.V., La Rota M., Matthews D.E., Sorrells M.E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 2002;48:501–510. doi: 10.1023/A:1014875206165. PubMed DOI
Thiel T., Michalek W., Varshney R.K., Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) Theor. Appl. Genet. 2003;106:411–422. doi: 10.1007/s00122-002-1031-0. PubMed DOI
Feng S.P., Li W.G., Huang H.S., Wang J.Y., Wu Y.T. Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis) Mol. Breed. 2009;23:85–97. doi: 10.1007/s11032-008-9216-0. PubMed DOI
Brookes A.J. The essence of SNPs. Gene. 1999;234:177–186. doi: 10.1016/S0378-1119(99)00219-X. PubMed DOI
Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 2002;5:94–100. doi: 10.1016/S1369-5266(02)00240-6. PubMed DOI
Jalving R., van’t Slot R., van Oost B.A. Chicken single nucleotide polymorphism identification and selection for genetic mapping. Poult. Sci. 2004;83:1925–1931. doi: 10.1093/ps/83.12.1925. PubMed DOI
Parkinson J., Blaxter M. Expressed sequence tags: Analysis and annotation. In: Melville S.E., editor. Methods in Molecular Biology Parasite Genomics Protocols. Humana Press; Totowa, NJ, USA: 2004. pp. 93–126. PubMed
Nickerson D.A., Tobe V.O., Taylor S.L. PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 1997;25:2745. doi: 10.1093/nar/25.14.2745. PubMed DOI PMC
Marth G.T., Korf I., Yandell M.D., Yeh R.T., Gu Z., Zakeri H., Stitziel N.O., Hillier L., Kwok P.Y., Gish W.R. A general approach to single-nucleotide polymorphism discovery. Nat. Genet. 1999;23:452–456. doi: 10.1038/70570. PubMed DOI
Huntley D., Baldo A., Johri S., Sergot M. SEAN: SNP prediction and display program utilizing EST sequence clusters. Bioinformatics. 2006;22:495–496. doi: 10.1093/bioinformatics/btk006. PubMed DOI
Bonfield J.K., Rada C., Staden R. Automated detection of point mutations using fluorescent sequence trace subtraction. Nucleic Acids Res. 1998;26:3404–3409. doi: 10.1093/nar/26.14.3404. PubMed DOI PMC
Close T.J., Wanamaker S., Roose M.L., Lyon M. HarvEST. Methods Mol. Biol. 2007;406:161–177. PubMed
Barker G., Batley J., O’Sullivan H., Edwards K.J., Edwards D. Redundancy based detection of sequence polymorphisms in expressed sequence tag data using AutoSNP. Bioinformatics. 2003;19:421–422. doi: 10.1093/bioinformatics/btf881. PubMed DOI
Tang J., Vosman B., Voorrips R.E., van der Linden C.G., Leunissen J.A. QualitySNP: A pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinform. 2006;7:438. doi: 10.1186/1471-2105-7-438. PubMed DOI PMC
Tang J., Leunissen J.A., Voorrips R.E., van der Linden C.G., Vosman B. HaploSNPer: A web-based allele and SNP detection tool. BMC Genet. 2008;9:23. doi: 10.1186/1471-2156-9-23. PubMed DOI PMC
Nijveen H., van Kaauwen M., Esselink D.G., Hoegen B., Vosman B. QualitySNPng: A user-friendly SNP detection and visualization tool. Nucleic Acids Res. 2013;41:W587–W590. doi: 10.1093/nar/gkt333. PubMed DOI PMC
Anithakumari A.M., Tang J., van Eck H.J., Visser R.G., Leunissen J.A., Vosman B., van der Linden C.G. A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol. Breed. 2010;26:65–75. doi: 10.1007/s11032-009-9377-5. PubMed DOI PMC
Stapley J., Birkhead T.R., Burke T., Slate J. A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution. Genetics. 2008;179:651–667. doi: 10.1534/genetics.107.086264. PubMed DOI PMC
Orsini L., Jansen M., Souche E.L., Geldof S., De Meester L. Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna. BMC Genom. 2011;12:309. doi: 10.1186/1471-2164-12-309. PubMed DOI PMC
Cardoso K.C., Da Silva M.J., Costa G.G., Torres T.T., Del Bem L.E., Vidal R.O., Menossi M., Hyslop S. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu) BMC Genom. 2010;11:605. doi: 10.1186/1471-2164-11-605. PubMed DOI PMC
Hou R., Bao Z., Wang S., Su H., Li Y., Du H., Hu J., Wang S., Hu X. Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS ONE. 2011;6:e21560. doi: 10.1371/journal.pone.0021560. PubMed DOI PMC
[(accessed on 20 December 2021)]; Available online: http://www.ncbi.nlm.nih.gov/dbEST/index.html.
Masoudi-Nejad A., Tonomura K., Kawashima S., Moriya Y., Suzuki M., Itoh M., Kanehisa M., Endo T., Goto S. EGassembler: Online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res. 2006;34:W459–W462. doi: 10.1093/nar/gkl066. PubMed DOI PMC
Lee Y., Tsai J., Sunkara S., Karamycheva S., Pertea G., Sultana R., Antonescu V., Chan A., Cheung F., Quackenbush J. The TIGR Gene Indices: Clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res. 2005;33:D71–D74. doi: 10.1093/nar/gki064. PubMed DOI PMC
Huang X., Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9:868–877. doi: 10.1101/gr.9.9.868. PubMed DOI PMC
Smit A.F.A., Hubley R., Green P. RepeatMasker Open-3.0. [(accessed on 15 December 2021)]. Available online: http://www.repeatmasker.org/
Ewing B., Hillier L., Wendl M.C., Green P. Base-calling of automated sequencer traces using Phred I: Accuracy assessment. Genome Res. 1998;8:175–185. doi: 10.1101/gr.8.3.175. PubMed DOI
Burge C., Karlin S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997;268:78–94. doi: 10.1006/jmbi.1997.0951. PubMed DOI
Allan G., Williams A., Rabinowicz P.D., Chan A.P., Ravel J., Keim P. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet. Resour. Crop Evol. 2008;55:365–378. doi: 10.1007/s10722-007-9244-3. DOI
Foster J.T., Allan G.J., Chan A.P., Rabinowicz P.D., Ravel J., Jackson P.J., Keim P. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis) BMC Plant Biol. 2010;10:13. doi: 10.1186/1471-2229-10-13. PubMed DOI PMC
Gupta P., Idris A., Mantri S., Asif M.H., Yadav H.K., Roy J.K., Tuli R., Mohanty C.S., Sawant S.V. Discovery and use of single nucleotide polymorphic (SNP) markers in Jatropha curcas L. Mol. Breed. 2012;30:1325–1335. doi: 10.1007/s11032-012-9719-6. DOI
Siju S., Ismanizan I., Wickneswari R. Genetic homogeneity in Jatropha curcas L. individuals as revealed by microsatellite markers: Implication to breeding strategies. Braz. J. Bot. 2015;39:861–886. doi: 10.1007/s40415-014-0117-7. DOI
Jander G., Norris S.R., Rounsley S.D., Bush D.F., Levin I.M., Last R.L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 2002;129:440–450. doi: 10.1104/pp.003533. PubMed DOI PMC
Newcomb R.D., Crowhurst R.N., Gleave A.P., Rikkerink E.H., Allan A.C., Beuning L.L., Bowen J.H., Gera E., Jamieson K.R., Janssen B.J., et al. Analyses of expressed sequence tags from apple. Plant Physiol. 2006;141:147–166. doi: 10.1104/pp.105.076208. PubMed DOI PMC
Gaur M., Das A., Subudhi E. High quality SNPs/Indels mining and characterization in ginger from ESTs data base. Bioinformation. 2015;11:85–89. doi: 10.6026/97320630011085. PubMed DOI PMC
[(accessed on 20 December 2021)]. Available online: https://www.arabidopsis.org.
Pootakham W., Chanprasert J., Jomchai N., Sangsrakru D., Yoocha T., Therawattanasuk K., Tangphatsornruang S. Single nucleotide polymorphism marker development in the rubber tree, Hevea brasiliensis (Euphorbiaceae) Am. J. Bot. 2011;98:e337–e338. doi: 10.3732/ajb.1100228. PubMed DOI
Bhattramakki D., Dolan M., Hanafey M., Wineland R., Vaske D., Register J.C., 3rd, Tingey S.V., Rafalski A. Insertion-deletion polymorphisms in 3’ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol. Biol. 2002;48:539–547. doi: 10.1023/A:1014841612043. PubMed DOI
Duncan B.K., Miller J.H. Mutagenic deamination of cytosine residues in DNA. Nature. 1980;287:560–561. doi: 10.1038/287560a0. PubMed DOI
Souche E.L., Hellemans B., Van Houdt J.K.J., Canario A., Klages S., Reinhardt R., Volckaert F.A.M. Mining for Single Nucleotide Polymorphisms in Expressed Sequence Tags of European Sea Bass. J. Integr. Bioinform. 2007;4:73. doi: 10.1515/jib-2007-73. DOI